SEARCH

SEARCH BY CITATION

  • Assaf, S. Y. & Chung, S. H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734738.
  • Becker, C.-M. (1995). Glycine receptors: molecular heterogeneity and implications for disease. The Neuroscientist 1, 130141.
  • Bloomenthal, A. B., Goldwater, E., Pritchett, D. B. & Harrison, N. L. (1994). Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+. Molecular Pharmacology 46, 11561159.
  • Choi, Y.-B. & Lipton, S. A. (1999). Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171190.
  • Fisher, J. L. & McDonald, R. L. (1998). The role of an α subtype M2-M3 His in regulating inhibition of GABAA receptor current by Zn2+ and other divalent cations. Journal of Neuroscience 18, 29442953.
  • Frederickson, C. J. (1989). Neurobiology of zinc and zinc-containing neurons. International Journal of Neurobiology 31, 145238.
  • Gready, J. E., Ranganathan, S., Schofield, P. R., Matsuo, Y. & Nishikawa, K. (1997). Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site. Protein Science 6, 983998.
  • Grenningloh, G., Schmieden, V., Schofield, P. R., Seeburg, P. H., Siddique, T., Mohandas, T. K., Becker, C.-M. & Betz, H. (1990). Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO Journal 9, 771776.
  • Harrison, N. L. & Gibbons, S. J. (1994). Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology 33, 935952.
  • Heim, R., Cubitt, A. B. & Tsien, R. Y. (1995). Improved green fluorescence. Nature 373, 663664.
  • Horenstein, J. & Akabas, M. H. (1998). Location of a high affinity Zn2+ binding site in the channel of α1β1 γ-aminobutyric acidA receptors. Molecular Pharmacology 53, 870877.
  • Howell, G. A., Welch, M. G. & Frederickson, C. J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736738.
  • Koradi, R., Billeter, M. & Wethrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. Journal of Molecular Graphics 14, 5155.
  • Kuhse, J., Schmieden, V. & Betz, H. (1990). Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. Journal of Biological Chemistry 265, 2231722320.
  • Kumamoto, E. & Murata, Y. (1996). Glycine current in rat septal cholinergic neuron in culture: Monophasic positive modulation by Zn2+. Journal of Neurophysiology 76, 227241.
  • Laube, B., Kuhse, J., Rundstrom, N., Kirsch, J., Schmieden, V. & Betz, H. (1995). Modulation by Zn2+ ions of native rat and recombinant human inhibitory glycine receptors. The Journal of Physiology 483, 613619.
  • Lunblad, R. L. & Noyes, C. M. (1984). Modification of histidine residues. In Modification of histidine residues, pp. 105125. CRC Press Inc., Boca Raton , FL , USA .
  • Lynch, J. W., Jacques, P., Pierce, K. D. & Schofield, P. (1998). Zinc potentiation of glycine receptor chloride channel is mediated by allosteric pathways. Journal of Neurochemistry 71, 21592168.
  • Matzenbach, B., Maulet, Y., Sefton, L., Courtier, B., Avner, P., Guenet, J. L. & Betz, H. (1994). Structural analysis of mouse glycine receptor α subunit genes. Identification and chromosomal localization of a novel variant, α4. Journal of Biological Chemistry 269, 26072612.
  • Miles, E. W. (1977). Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods in Enzymology 47, 431443.
  • Smart, T. G. & Constanti, A. (1982). A novel effect of zinc on the lobster muscle GABA receptor. Proceedings of the Royal Society B 215, 327341.
  • Smart, T. G., Krishek, B. J. & Xie, X. (1994). Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Progress in Neurobiology 42, 393441.
  • Smart, T. G., Moss, S. J., Xie, X. & Huganir, R. L. (1991). GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. British Journal of Pharmacology 103, 18371839.
  • Trombley, P. Q. & Shepherd, G. M. (1996). Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. Journal of Neurophysiology 76, 25362546.
  • Vallee, B. L. & Falchuk, K. H. (1993). The biochemical basis of zinc physiology. Physiological Reviews 73, 79118.
  • Velazquez, R. A., Cai, Y., Shi, Q. & Larson, A. A. (1999). The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. Journal of Neuroscience 19, 22882300.
  • Wang, T.-L., Hackam, A., Guggino, W. B. & Cutting, G. R. (1995). A single histidine residue is essential for zinc inhibition of GABA ρ1 receptors. Journal of Neuroscience 15, 76847691.
  • Wooltorton, J. R. A., McDonald, B. J., Moss, S. J. & Smart, T. G. (1997). Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of β subunits. The Journal of Physiology 505, 633640.
  • Xu, M. & Akabas, M. H. (1996). Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor α1 subunit. Journal of General Physiology 107, 195205.