SEARCH

SEARCH BY CITATION

  • Andersen, P. & Saltin, B. (1985). Maximal perfusion of skeletal muscle in man. The Journal of Physiology 366, 233249.
  • Clowes, G. H. A., Randall, H. T. & Cha, C.-J. (1980). Amino acid and energy metabolism in septic and traumatized patients. Journal of Parenteral and Enteral Nutrition 4, 195205.
  • Fell, R. D., Terblanche, S. E., Ivy, J. L., Young, J. C. & Holloszy, J. O. (1982). Effect of muscle glycogen content on glucose uptake following exercise. Journal of Applied Physiology 52, 434437.
  • Gollnick, P. D., Pernow, B., Essén, B., Jansson, E. & Saltin, B. (1981). Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clinical Physiology 1, 2742.
  • Gollnick, P. D., Piehl, K., Saubert, C. W., Armstrong, R. B. & Saltin, B. (1972). Diet, exercise, and muscle glycogen. Journal of Applied Physiology 33, 421425.
  • Graham, T. E., Kiens, B., Hargreaves, M. & Richter, E. A. (1991). Influence of fatty acids on ammonia and amino acid flux from active human muscle. American Journal of Physiology 261, E168176.
  • Graham, T. E., Turcotte, L. P., Kiens, B. & Richter, E. A. (1995). Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. Journal of Applied Physiology 78, 725735.
  • Hagenfeldt, L. & Arvidsson, A. (1980). The distribution of amino acids between plasma and erythrocytes. Clinica Chimica Acta 100, 133141.DOI: 10.1016/0009-8981(80)90074-1
  • Hargreaves, M., McConell, G. & Proietto, J. (1995). Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. Journal of Applied Physiology 78, 288292.DOI: 10.1063/1.360672
  • Hespel, P. & Richter, E. A. (1992). Mechanisms linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochemical Journal 284, 777780.
  • Hjemdahl, P., Daleskog, M. & Kahan, T. (1979). Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: Comparison with a radioenzymatic method. Life Sciences 25, 131138.DOI: 10.1016/0024-3205(79)90384-9
  • Kjaer, M., Secher, N. H., Bach, F. W. & Galbo, H. (1987). Role of motor center activity for hormonal changes and substrate mobilization in humans. American Journal of Physiology 253, R687695.
  • Leighton, B., Blomstrand, E., Challiss, R. A. J., Lozeman, F. J., Parry-Billings, M., Dimitriadis, G. D. & Newsholme, E. A. (1989). Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exercised-trained rats. Acta Physiologica Scandinavica 136, 177184.
  • Lemon, P. W. R. (1987). Protein and exercise: update 1987. Medicine and Science in Sports and Exercise 19, S179190.
  • Lemon, P. W. R. & Mullin, J. P. (1980). Effect of initial muscle glycogen levels on protein catabolism during exercise. The Journal of Physiology 48, 624629.
  • Lowry, O. H. & Passonneau, J. V. (1972). A Flexible System of Enzymatic Analysis. Academic Press, New York .
  • MacLean, D. A., Graham, T. E. & Saltin, B. (1994). Branched- chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. American Journal of Physiology 267, E10101022.
  • Pfeifer, R., Karol, R., Korpi, J., Burgoyne, R. & McCourt, D. (1983). Practical application of HPLC to amino acid analysis. American Laboratory 15, 7784.
  • Van Hall, G. (1996). Amino acids, ammonia and exercise in man. PhD Thesis, University of Limburg, Maastricht , The Netherlands .
  • Van Hall, G., Saltin, B., Van der Vusse, G. J., Söderlund, K. & Wagenmakers, A. J. M. (1995). Deamination of amino acids as a source of ammonia production during prolonged exercise. The Journal of Physiology 489, 251261.
  • Weltan, S. M., Bosch, A. N., Dennis, S. C. & Noakes, T. D. (1998). Influence of muscle glycogen content on metabolic regulation. American Journal of Physiology 274, E7282.