SEARCH

SEARCH BY CITATION

  • Akabas M. H., Kaufmann, C., Archdeacon, P. & Karlin, A. (1994). Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron 13, 919927.
  • Akopian A. N., Sivilotti, L. & Wood, J. N. (1996). A tetrodotoxin-resistant voltage-gated sodium-channel expressed by sensory neurons. Nature 379, 257262.
  • Anand R., Conroy, W. G., Schoepfer, R., Whiting, P. & Lindstrom, J. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. Journal of Biological Chemistry 266, 1119211198.
  • Chang Y., Wang, R., Barot, S. & Weiss, D. S. (1996). Stoichiometry of a recombinant GABAA receptor. Journal of Neuroscience 16, 54155424.
  • Chang Y. & Weiss, D. S. (1998). Substitutions of the highly conserved M2 leucine create spontaneously opening ρ1 γ-aminobutyric acid receptors. Molecular Pharmacology 53, 511523.
  • Chang Y. C. & Weiss, D. S. (1999). Allosteric activation mechanism of the α1β2γ2 γ-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine. Biophysical Journal 77, 25422551.
  • Colquhoun D. & Sakmann, B. (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. Journal of Physiology 369, 501557.
  • Colquhoun D. & Sigworth, F. J. (1995). Fitting and statistical analysis of single-channel records. In Single-Channel Recording, ed. Sakmann, B. & Neher, E., pp. 483587. Plenum Press, New York .
  • Conroy W. G. & Berg, D. K. (1995). Neurons can maintain multiple classes of nicotinic receptors distinguished by different subunit compositions. Journal of Biological Chemistry 270, 44244431.
  • Cooper E., Couturier, S. & Ballivet, M. (1991). Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350, 235238.
  • Corringer P.-J., Le Novère, N. & Changeux, J.-P. (2000). Nicotinic receptors at the amino acid level Annual Review of Pharmacology and Toxicology 40, 431458.
  • Covernton P. J. O., Kojima, H., Sivilotti, L. G., Gibb, A. J. & Colquhoun, D. (1994). Comparison of neuronal nicotinic receptors in rat sympathetic neurons with subunit pairs expressed in Xenopus oocytes. Journal of Physiology 481, 2734.
  • Filatov G. N. & White, M. M. (1995). The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Molecular Pharmacology 48, 379384.
  • Flores C. M., Decamp, R. M., Kilo, S., Rogers, S. W. & Hargreaves, K. M. (1996). Neuronal nicotinic receptor expression in sensory neurons of the rat trigeminal ganglion: demonstration of α3α4, a novel subtype in the mammalian nervous system. Journal of Neuroscience 16, 78927901.
  • Forsayeth J. R. & Kobrin, E. (1997). Formation of oligomers containing the β3 and β4 subunits of the rat nicotinic receptor. Journal of Neuroscience 17, 15311538.
  • Gerzanich V., Wang, F., Kuryatov, A. & Lindstrom, J. (1998). α5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal α3 nicotinic receptors. Journal of Pharmacology and Experimental Therapeutics 286, 311320.
  • Groot-Kormelink P. J. & Luyten, W. H. M. L. (1997). Cloning and sequence of full-length cDNAs encoding the human neuronal nicotinic acetylcholine receptor (nAChR) subunits β3 and β4 and expression of seven nAChR subunits in the human neuroblastoma cell line SH-SY5Y and/or IMR-32. FEBS Letters 400, 309314.
  • Groot-Kormelink P. J., Luyten, W. H. M. L., Colquhoun, D. & Sivilotti, L. G. (1998). A reporter mutation approach shows incorporation of the “orphan” subunit β3 into a functional nicotinic receptor. Journal of Biological Chemistry 273, 1531715320.
  • Gu Y., Camacho, P., Gardner, P. & Hall, Z. W. (1991). Identification of two amino acid residues in the ε subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells. Neuron 6, 879887.
  • Imoto K., Busch, C., Sakmann, B., Mishina, N., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. & Numa, S. (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645648.
  • Kearney P. C., Zhang, H., Zhong, W., Dougherty, D. A. & Lester, H. A. (1996). Determinants of nicotinic receptor gating in natural and unnatural side chain structures at the M2 9′ position. Neuron 17, 12211229.
  • Kreienkamp H. J., Maeda, R. K., Sine, S. M. & Taylor, P. (1995). Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron 14, 635644.
  • Labarca C., Nowak, M. W., Zhang, H., Tang, L., Deshpande, P. & Lester, H. A. (1995). Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376, 514516.
  • Lena C., D'Exaerde, A. D., Cordero-Erausquin, M., Le Novère, N., Arroyo-Jimenez, M. D. M. & Changeux, J.-P. (1999). Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proceedings of the National Academy of Sciences of the USA 96, 1212612131.
  • Le Novere N., Zoli, M. & Changeux, J.-P. (1996). Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. European Journal of Neuroscience 8, 24282439.
  • Lewis T. M., Harkness, P. C., Sivilotti, L. G., Colquhoun, D. & Millar, N. (1997). Heterologous expression of a neuronal nicotinic receptor yields channels whose properties are dependent on host cell type. Journal of Physiology 505, 299306.
  • Listerud M., Brussaard, A. B., Devay, P., Colman, D. R. & Role, L. W. (1991). Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Science 254, 15181521 (published erratum appears in Science 255, 12 (1992).
  • Liu L., Chang, C. Q., Jiao, Y. Q. & Simon, S. A. (1998). Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Research 809, 238245.
  • McGehee D. S. & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology 57, 521546.
  • Miller C. (1989). Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron 2, 11951205.
  • Nelson M. E. & Lindstrom, J. (1999). Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits. Journal of Physiology 516, 657678.
  • Quick M. W., Ceballos, R. M., Kasten, M., McIntosh, J. M. & Lester, R. A. J. (1999). α3β4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 38, 769783.
  • Quick M. W. & Lester, H. A. (1994). Methods for expression of excitability proteins in Xenopus oocytes. Methods in Neurosciences. 19, 261279.
  • Papke R. L. (1993). The kinetic properties of neuronal nicotinic receptors: genetic basis of functional diversity. Progress in Neurobiology 41, 509531.
  • Papke R. L., Boulter, J., Patrick, J. & Heinemann, S. (1989). Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron 3, 589596.
  • Ramirez-Latorre J., Yu, C. R., Qu, X., Perin, F., Karlin, A. & Role, L. (1996). Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347351.
  • Revah F., Bertrand, D., Galzi, J.-L., Devillers-Thiéry, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M. & Changeux, J.-P. (1991). Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846849.
  • Sands S. B., Costa, A. C. S. & Patrick, J. W. (1993). Barium permeability of neuronal nicotinic receptor α7 expressed in Xenopus oocytes. Biophysical Journal 65, 26142621.
  • Sivilotti L. G., Colquhoun, D. & Millar, N. (2000). Comparison of native and recombinant neuronal nicotinic receptors: problems of measurement and expression. In Neuronal Nicotinic Receptors, ed. Clementi, F. & Gotti, C., pp. 379416. Springer-Verlag, Berlin , Heidelberg , New York .
  • Sivilotti L. G., McNeil, D. K., Lewis, T. M., Nassar, M. A., Schoepfer, R. & Colquhoun, D. (1997). Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. Journal of Physiology 500, 123138.
  • Sumikawa K. (1992). Sequences on the N-terminus of ACh receptor subunits regulate their assembly. Molecular Brain Research 13, 349353.
  • Unwin N. (1993). Nicotinic acetylcholine receptor at 9 Å resolution. Journal of Molecular Biology 229, 11011124.
  • Vailati S., Moretti, M., Balestra, B., Mcintosh, M., Clementi, F. & Gotti, C. (2000). β3 subunit is present in different nicotinic receptor subtypes in chick retina. European Journal of Pharmacology 393, 2330.
  • Vernallis A. B., Conroy, W. G. & Berg, D. K. (1993). Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10, 451464.
  • Yakel J. L., Lagrutta, A., Adelman, J. P. & North, R. A. (1993). Single amino acid substitution affects desensitization of the 5hydroxytryptamine type 3 receptor expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences of the USA 90, 50305033.
  • Yu C. R. & Role, L. W. (1998a). Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. Journal of Physiology 509, 651665.
  • Yu C. R. & Role, L. W. (1998b). Functional contribution of the α5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones. Journal of Physiology 509, 667681.
  • Yu X.-M. & Hall, Z. W. (1991). Extracellular domains mediating ε subunit interactions of muscle acetylcholine receptor. Nature 352, 6467.