SEARCH

SEARCH BY CITATION

  • Allen D. G., Lännergren, J. & Westerblad, H. (1995). Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Experimental Physiology 80, 497527.
  • Allen D. G., Lee, J. A. & Westerblad, H. (1989). Intracellular calcium and tension during fatigue in isolated single muscle fibers from Xenopus laevis. Journal of Physiology 415, 433458.
  • Balnave C. D. & Allen, D. G. (1998). Evidence for Na+/Ca2+ exchange in intact single skeletal muscle fibers from the mouse. American Journal of Physiology 274, C940946.
  • Balnave C. D., Davey, D. F. & Allen, D. G. (1997). Distribution of sarcomere length and [Ca2+]i in single fibres from mouse skeletal muscle following stretch-induced injury. Journal of Physiology 502, 649659.
  • Blinks J. R., Rudel, R. & Taylor, S. R. (1978). Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. Journal of Physiology 277, 291323.
  • Callewaert G., Cleemann, L. & Morad, M. (1989). Caffeine-induced Ca2+ release activates Ca2+ extrusion via Na+-Ca2+ exchanger in cardiac myocytes. American Journal of Physiology 257, C147152.
  • Chen W., Steenbergen, C., Levy, L. A., Vance, J., London, R. E. & Murphy, E. (1996). Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-diflurophenoxy)ethane-N,N,N',N''-tetraacetic acid by 19F NMR. Journal of Biological Chemistry 271, 73987403.
  • Dahlstedt A. J., Katz, A., Wieringa, B. & Westerblad, H. (2000). Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. FASEB Journal 14, 982990.
  • Duke A. M. & Steele, D. S. (2000). Characteristics of phosphate-induced Ca2+ efflux from the SR in mechanically skinned rat skeletal muscle fibers. American Journal of Physiology 278, C126135.
  • Endo M. & Iino, M. (1980). Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment. Journal of Muscle Research and Cell Motility 1, 89100.
  • Fryer M. W., Owen, V. J., Lamb, G. D. & Stephenson, D. G. (1995). Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. Journal of Physiology 482, 123140.
  • Fryer M. W. & Stephenson, D. G. (1996). Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. Journal of Physiology 493, 357370.
  • Godt R. E. & Maughan, D. W. (1988). On the composition of of the cytosol of relaxed skeletal muscle of the frog. American Journal of Physiology 254, C591604.
  • Golovina V. A. & Blaustein, M. P. (1997). Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 16431648.
  • Gonzalez-Serratos H., Somlyo, A. V., Mccellan, G., Shuman, H., Borrero, L. M. & Somlyo, A. P. (1978). Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proceedings of the National Academy of Sciences of the USA 75, 13291333.
  • Kabbara A. A. & Allen, D. G. (1999a). Measurement of sarcoplasmic reticulum Ca2+ content in intact amphibian skeletal muscle fibres with 4-chloro-m-cresol. Cell Calcium 25, 227235.
  • Kabbara A. A. & Allen, D. G. (1999b). The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. Journal of Physiology 519, 169176.
  • Kabbara A. A., Nguyen, L. T., Stephenson, G. M. M. & Allen, D. G. (2000). Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. Journal of Muscle Research and Cell Motility 21, 481489.
  • Klein M. G., Kovacs, L., Simon, B. J. & Schneider, M. F. (1991). Decline of myoplasmic Ca2+, recovery of calcium release and sarcoplasmic Ca2+ pump properties in frog skeletal muscle. Journal of Physiology 441, 639671.
  • Kurebayashi N., Harkins, A. B. & Baylor, S. M. (1993). Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibres. Biophysical Journal 64, 19341960.
  • Launikonis B. S. & Stephenson, D. G. (1997). Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacea (yabby) skeletal muscle. Journal of Physiology 504, 425437.
  • Lee J. A., Westerblad, H. & Allen, D. G. (1991). Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Journal of Physiology 433, 307326.
  • Meldolesi J. & Pozzan, T. (1998). The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends in Biochemical Science 23, 1014.
  • Mobley B. A. & Eisenberg, B. R. (1975). Sizes of components in frog skeletal muscle measured by methods of stereology. Journal of General Physiology 66, 3145.
  • Peachey L. D. (1965). The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. Journal of Cell Biology 25 (suppl.), 209231.
  • Rall J. A. (1996). Role of parvalbumin in skeletal muscle relaxation. News in Physiological Sciences 11, 249255.
  • Somlyo A. V., Gonzalez-Serratos, H., Shuman, H., McClellan & Somlyo, A. P. (1981). Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study. Journal of Cell Biology 90, 577594.
  • Westerblad H. & Allen, D. G. (1993). The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. Journal of Physiology 468, 729740.
  • Westerblad H. & Allen, D. G. (1994). The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone. Journal of Physiology 474, 291301.
  • Westerblad H. & Allen, D. G. (1996). The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pflügers Archiv 431, 964970.