SEARCH

SEARCH BY CITATION

  • Barfod, E. T., Moore, A. L. & Lidofsky, S. D. (2001). Cloning and functional expression of a liver isoform of the small conductance Ca2+-activated K+ channel SK3. American Journal of Physiology - Cell Physiology 280, C836842.
  • Benton, D. C. H., Dunn, P. M., Chen, J. Q., Galanakis, D., Ganellin, C. R., Malik-Hall, M., Shah, M., Haylett, D. G. & Jenkinson, D. H. (1999). UCL 1848: A novel bis-quinolinium cyclophane which blocks apamin-sensitive K+ channels with nanomolar affinity. British Journal of Pharmacology 128, 39P
  • Blackman, J. G., Ginsborg, B. L. & Ray, C. (1963). Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. Journal of Physiology 167, 374388.
  • Bond, C. T., Sprengel, R., Bissonnette, J. M., Kaufmann, W. A., Pribnow, D., Neelands, T., Storck, T., Baetscher, M., Jerecic, J., Maylie, J., Knaus, H. G., Seeburg, P. H. & Adelman, J. P. (2000). Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289, 19421946.
  • Burgess, G. M., Claret, M. & Jenkinson, D. H. (1981). Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. Journal of Physiology 317, 6790.
  • Campos Rosa, J., Galanakis, D., Ganellin, C. R., Dunn, P. M. & Jenkinson, D. H. (1998). Bis-quinolinium cyclophanes: 6,10-diaza-3(1,3),8(1,4)-dibenzena-1,5(1,4)-diquinolinacyclodecaphane (UCL 1684), the first nanomolar, non-peptidic blocker of the apamin-sensitive Ca2+-activated K+ channel. Journal of Medicinal Chemistry 41, 25.
  • Campos Rosa, J., Galanakis, D., Piergentili, A., Bhandari, K., Ganellin, C. R., Dunn, P. M. & Jenkinson, D. H. (2000). Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. Journal of Medicinal Chemistry 43, 420431.
  • Castle, N. A. (1999). Recent advances in the biology of small conductance calcium-activated potassium channels. Perspectives in Drug Discovery and Design 15/16, 131154.
  • Chandy, K. G., Fantino, E., Wittekindt, O., Kalman, K., Tong, L. L., Ho, T. H., Gutman, G. A., Crocq, M. A., Ganguli, R., Nimgaonkar, V., Morrisrosendahl, D. J. & Gargus, J. J. (1998). Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder Molecular Psychiatry 3, 3237.
  • Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Analytical Biochemistry 162, 156159.
  • Colquhoun, D., Rang, H. P. & Ritchie, J. M. (1974). The binding of tetrodotoxin and α-bungarotoxin to normal and denervated mammalian muscle. Journal of Physiology 240, 199226.
  • Cook, N. S. & Haylett, D. G. (1985). Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes. Journal of Physiology 358, 373394.
  • Dulon, D., Luo, L., Zhang, C. & Ryan, A. F. (1998). Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea. European Journal of Neuroscience 10, 907915.
  • Dunn, P. M. (1994). Dequalinium, a selective blocker of the slow afterhyperpolarization in rat sympathetic neurons in culture. European Journal of Pharmacology 252, 189194.
  • Dunn, P. M. (1999). UCL1684: a potent blocker of Ca2+-activated K+ channels in rat adrenal chromaffin cells in culture. European Journal of Pharmacology 368, 119123.
  • Dunn, P. M., Benton, D. C. H., Campos Rosa, J., Ganellin, C. R. & Jenkinson, D. H. (1996). Discrimination between subtypes of apamin-sensitive Ca2+-activated K+ channels by gallamine and a novel bis-quaternary quinolinium cyclophane, UCL 1530. British Journal of Pharmacology 117, 3542.
  • Goh, J. W., Kelly, M. E., Pennefather, P. S., Chicchi, G. G., Cascieri, M. A., Garcia, M. L. & Kaczorowski, G. J. (1992). Effect of charybdotoxin and leiurotoxin I on potassium currents in bullfrog sympathetic ganglion and hippocampal neurons. Brain Research 591, 165170.
  • Grunnet, M., Jensen, B. S., Olesen, S. P. & Klaerke, D. A. (2001). Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflügers Archiv 441, 544550.
  • Haylett, D. G. & Jenkinson, D. H. (1990). Calcium-activated potassium channels. In Potassium Channels, ed. Cook, N. S., pp. 7095. Ellis Horwood, Chichester
  • Hosseini, R., Benton, D. C. H., Haylett, D. G. & Moss, G. W. J. (1999). Cloning of an SK channel from rat sympathetic neurones. Journal of Physiology 518.P, 122 P
  • Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Garnier, J. M., Weber, C., Mandel, J. L., Cancel, G., Abbas, N., Durr, A., Didierjean, O., Stevanin, G., Agid, Y. & Brice, A. (1996). Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genetics 14, 285291.
  • Ishii, T. M., Maylie, J. & Adelman, J. P. (1997). Determinants of apamin and d-tubocurarine block in SK potassium channels. Journal of Biological Chemistry 272, 2319523200.
  • Jäger, H., Adelman, J. P. & Grissmer, S. (2000). SK2 encodes the apamin-sensitive Ca2+-activated K+ channels in the human leukemic T cell line, Jurkat. FEBS Letters 469, 196202.
  • Jensen, B. S., Strøbæk, D., Christophersen, P., Jorgensen, T. D., Hansen, C., Silahtaroglu, A., Olesen, S. P. & Ahring, P. K. (1998). Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. American Journal of Physiology 275, C848856.
  • Joiner, W. J., Wang, L. Y., Tang, M. D. & Kaczmarek, L. K. (1997). hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proceedings of the National Academy of Sciences of the USA 94, 1101311018.
  • Kawai, T. & Watanabe, M. (1986). Blockade of Ca-activated K conductance by apamin in rat sympathetic neurons. British Journal of Pharmacology 87, 225232.
  • Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K. & Schlichter, L. C. (1999). hSK4/hIK1, a calmodulin-binding K-Ca channel in human T lymphocytes - Roles in proliferation and volume regulation. Journal of Biological Chemistry 274, 1483814849.
  • Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J. & Adelman, J. P. (1996). Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273, 17091714.
  • Kozak, M. (1987). An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15, 81258148.
  • Logsdon, N. J., Kang, J. S., Togo, J. A., Christian, E. P. & Aiyar, J. (1997). A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. Journal of Biological Chemistry 272, 3272332726.
  • Lüscher, C., Streit, J., Lipp, P. & Lüscher, H. R. (1994). Action-potential propagation through embryonic dorsal-root ganglion-cells in culture. 2. Decrease of conduction reliability during repetitive stimulation. Journal of Neurophysiology 72, 634643.
  • McAfee, D. A. & Yarowsky, P. T. (1979). Calcium-dependent potentials in the mammalian sympathetic neurone. Journal of Physiology 290, 507523.
  • Malik-Hall, M., Ganellin, C. R., Galanakis, D. & Jenkinson, D. H. (2000). Compounds that block both intermediate-conductance (IKCa) and small-conductance (SKCa) calcium-activated potassium channels. British Journal of Pharmacology 129, 14311438.
  • Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, vol. III, pp. 199. Plenum Press, New York
  • Pedarzani, P., Kulik, A., Muller, M., Ballanyi, K. & Stocker, M. (2000). Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones. Journal of Physiology 527, 283290.
  • Pribnow, D., Johnson-Pais, T., Bond, C. T., Keen, J., Johnson, R. A., Janowsky, A., Silvia, C., Thayer, M., Maylie, J. & Adelman, J. P. (1999). Skeletal muscle and small-conductance calcium-activated potassium channels. Muscle and Nerve 22, 742750.
  • Sah, P. (1996). Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation. Trends in Neurosciences 19, 150154.
  • Sah, P. & Davies, P. (2000). Calcium-activated potassium currents in mammalian neurons. Clinical and Experimental Pharmacology and Physiology 27, 657663.
  • Selyanko, A. A. (1996). Single apamin-sensitive, small conductance calcium-activated potassium channels (SKCa) in membrane patches from rat sympathetic neurones. Journal of Physiology 494.P, 52 P
  • Shah, M. & Haylett, D. G. (2000). The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. British Journal of Pharmacology 129, 627630.
  • Stocker, M., Krause, M. & Pedarzani, P. (1999). An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proceedings of the National Academy of Sciences of the USA 96, 46624667.
  • Stocker, M. & Pedarzani, P. (2000). Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2 and SK3, in the adult rat central nervous system. Molecular and Cellular Neuroscience 15, 476493.
  • Strøbæk, D., Jorgensen, T. D., Christophersen, P., Ahring, P. K. & Olesen, S. P. (2000). Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. British Journal of Pharmacology 129, 991999.
  • Takanashi, H., Sawanobori, T., Kamisaka, K., Maezawa, H. & Hiraoka, M. (1992). Ca2+-activated K+ channel is present in guinea-pig but lacking in rat hepatocytes. Japanese Journal of Physiology 42, 415430.
  • Vandorpe, D. H., Shmukler, B. E., Jiang, L. W., Lim, B., Maylie, J., Adelman, J. P., de Franceschi, L., Cappellini, M. D., Brugnara, C. & Alper, S. L. (1998). cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1 - Roles in regulatory volume decrease and erythroid differentiation. Journal of Biological Chemistry 273, 2154221553.
  • Vergara, C., Latorre, R., Marrion, N. V. & Adelman, J. P. (1998). Calcium-activated potassium channels. Current Opinion in Neurobiology 8, 321329.
  • Wadsworth, J. D. F., Doorty, K. B. & Strong, P. N. (1994). Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+-activated K+ channels. Journal of Biological Chemistry 269, 1805318061.
  • Wadsworth, J. D. F., Torelli, S., Doorty, K. B. & Strong, P. N. (1997). Structural diversity among subtypes of small-conductance Ca 2+-activated potassium channels. Archives of Biochemistry and Biophysics 346, 151160.
  • Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnsonpais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J. & Adelman, J. P. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503507.
  • Yamashita, Y., Ogawa, H. & Akaike, N. (1996). ATP-induced rise in apamin-sensitive Ca2+-dependent K+ conductance in adult rat hepatocytes. American Journal of Physiology 270, G307313.