SEARCH

SEARCH BY CITATION

  • Akgoren, N., Dalgaard, P. & Lauritzen, M. (1996). Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain Research 710, 204214.
  • Ances B. M., Greenberg, J. H. & Detre, J. A. (2000). Effects of variations in interstimulus interval on activation-flow coupling response and somatosensory evoked potentials with forepaw stimulation in the rat. Journal of Cerebral Blood Flow and Metabolism 20, 290297.
  • Armstrong-James, M., Fox, K. & Das-Gupta, A. (1992). Flow of excitation within rat barrel cortex on striking a single vibrissa. Journal of Neurophysiology 68, 13451358.
  • Armstrong-James, M., Welker, E. & Callahan, C. A. (1993). The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex. Journal of Neuroscience 13, 21492160.
  • Barfod, C., Akgoren, N., Fabricius, M., Dirnagl, U. & Lauritzen, M. (1997). Laser Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation. Acta Physiologica Scandinavica 160, 123132.
  • Block, F., Schwarz, M. & Sontag, K. H. (1993). Non-NMDA-mediated transmission of somatosensory-evoked potentials in the rat thalamus. Brain Research Bulletin 31, 449454.
  • Bonvento, G., Charbonne, R., Correze, J. L., Borredon, J., Seylaz, J. & Lacombe, P. (1994). Is α-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research Brain Research 665, 213221.
  • Chapin J. K. & Lin, C. S. (1984). Mapping the body representation in the SI cortex of anesthetized and awake rats. Journal of Comparative Neurology 229, 199213.
  • Cholet, N., Seylaz, J., Lacombe, P. & Bonvento, G. (1997). Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. Journal of Cerebral Blood Flow and Metabolism 17, 11911201.
  • Creutzfeldt, O. (1995). General neurophysiology of the cortex. In Cortex cerebri, pp. 131163. Oxford Science Publishers, Oxford .
  • Detre J. A., Ances, B. M., Takahashi, K. & Greenberg, J. H. (1998). Signal averaged laser Doppler measurements of activation- flow coupling in the rat forepaw somatosensory cortex. Brain Research 796, 9198.
  • Di, S., Baumgartner, C. & Barth, D. S. (1990). Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. Journal of Neurophysiology 63, 832840.
  • Dowling J. L., Henegar, M. M., Liu, D., Rovainen, C. M. & Woolsey, T. A. (1996). Rapid optical imaging of whisker responses in the rat barrel cortex. Journal of Neuroscience Methods 66, 113122.
  • Edvinsson, L., Mulder, H., Goadsby, P. J. & Uddman, R. (1998). Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. Journal of the Autonomic Nervous System 70, 1522.
  • Fabricius, M., Akgoren, N., Dirnagl, U. & Lauritzen, M. (1997). Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: a pilot study. Journal of Cerebral Blood Flow and Metabolism 17, 13261336.
  • Gerrits R. J., Raczynski, C., Greene, A. S. & Stein, E. A. (2000). Regional cerebral blood flow responses to variable frequency whisker stimulation: an autoradiographic analysis. Brain Research 864, 205212.
  • Gerrits R. J., Stein, E. A. & Greene, A. S. (1998). Blood flow increases linearly in rat somatosensory cortex with increased whisker movement frequency. Brain Research 783, 151157.
  • Greenberg J. H., Sohn, N. W. & Hand, P. J. (1999). Nitric oxide and the cerebral-blood-flow response to somatosensory activation following deafferentation. Experimental Brain Research 129, 541550.
  • Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361364.
  • Hudetz A. G., Feher, G. & Kampine, J. P. (1996). Heterogeneous autoregulation of cerebrocortical capillary flow: Evidence for functional thoroughfare channels Microvascular Research 51, 131136.
  • Ichimi, K., Kuchiwaki, H., Inao, S., Shibayama, M. & Yoshida, J. (1999). Cerebral blood flow regulation under activation of the primary somatosensory cortex during electrical stimulation of the forearm. Neurological Research 21, 579584.
  • Jacquin M. F., Chiaia, N. L., Klein, B. G. & Rhoades, R. W. (1989). Structure-function relationships in the rat brainstem subnucleus interpolaris: VI. Cervical convergence in cells deafferented at birth and a potential primary afferent substrate. Journal of Comparative Neurology 283, 513525.
  • Lauritzen, M. (1994). Pathophysiology of the migraine aura. The spreading depression theory. Brain 117, 199210.
  • Leniger-Follert E. & Hossmann, K. A. (1979). Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflügers Archiv 380, 8589.
  • Leniger-Follert E. & Lubbers, D. W. (1977). Regulation of microflow and behaviour of local tissue Po2 during activation and anoxia of the brain cortex. Bibliotheca Anatomica 15, 345349.
  • Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. (1999). Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. American Journal of Physiology 277, H799811.
  • Lindauer, U., Megow, D., Schultze, J., Weber, J. R. & Dirnagl, U. (1996). Nitric oxide synthase inhibition does not affect somatosensory evoked potentials in the rat. Neuroscience Letters 216, 207210.
  • Lindauer, U., Villringer, A. & Dirnagl, U. (1993). Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. American Journal of Physiology 264, H12231228.
  • Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I. & Grinvald, A. (1997). Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proceedings of the National Academy of Sciences of the USA 94, 1482614831.
  • Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. (1998). Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. Journal of Physiology 512, 555566.
  • Mathiesen, C., Caesar, K. & Lauritzen, M. (2000). Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. Journal of Physiology 523, 235246.
  • Matsuura, T., Fujita, H., Seki, C., Kashikura, K., Yamada, K. & Kanno, I. (1999). CBF change evoked by somatosensory activation measured by laser-Doppler flowmetry: independent evaluation of RBC velocity and RBC concentration. Japanese Journal of Physiology 49, 289296.
  • Moskalenko Y. E., Dowling, J. L., Liu, D., Rovainen, C. M., Semernia, V. N. & Woolsey, T. A. (1996). LCBF changes in rat somatosensory cortex during whisker stimulation monitored by dynamic H2 clearance. International Journal of Psychophysiology 21, 4559.
  • Moskalenko Y. E., Woolsey, T. A., Rovainen, C., Weinstein, G. B., Liu, D., Semernya, V. N. & Mitrofanov, V. F. (1998). Blood flow dynamics in different layers of the somatosensory region of the cerebral cortex in the rat during mechanical stimulation of the vibrissae. Neuroscience and Behavioral Physiology 28, 459467.
  • Narayan S. M., Esfahani, P., Blood, A. J., Sikkens, L. & Toga, A. W. (1995). Functional increases in cerebral blood volume over somatosensory cortex. Journal of Cerebral Blood Flow and Metabolism 15, 754765.
  • Narayan S. M., Santori, E. M., Blood, A. J., Burton, J. S. & Toga, A. W. (1994). Imaging optical reflectance in rodent barrel and forelimb sensory cortex. Neuroimage 1, 181190.
  • Ngai A. C., Jolley, M. A., D'ambrosio, R., Meno, J. R. & Winn, H. R. (1999). Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Research 837, 221228.
  • Ngai A. C., Ko, K. R., Morii, S. & Winn, H. R. (1988). Effect of sciatic nerve stimulation on pial arterioles in rats. American Journal of Physiology 254, H133139.
  • Ngai A. C., Meno, J. R. & Winn, H. R. (1995). l-NNA suppresses cerebrovascular response and evoked potentials during somatosensory stimulation in rats. American Journal of Physiology 269, H18031810.
  • Nielsen A. N., Fabricius, M. & Lauritzen, M. (2000). Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression. Journal of Vascular Research 37, 513522.
  • Nilsson G. E. (1980). Perimeds LDV flowmeter. In Laser Doppler Flowmetry, ed. Sheperd, A. P. & Oberg, P. A., pp. 5772. Kluwer Academic Publishers, Amsterdam .
  • Niwa, K., Araki, E., Morham, S. G., Ross, M. E. & Iadecola, C. (2000). Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. Journal of Neuroscience 20, 763770.
  • Patel, U. (1983). Non-random distribution of blood vessels in the posterior region of the rat somatosensory cortex. Brain Research 289, 6570.
  • Raichle M. E. (1998). Behind the scenes of functional brain imaging: a historical and physiological perspective. Proceedings of the National Academy of Sciences of the USA 95, 765772.
  • Salt T. E. (1986). Mediation of thalamic sensory input by both NMDA receptors and non-NMDA receptors. Nature 322, 263265.
  • Segal S. S., Damon, D. N. & Duling, B. R. (1989). Propagation of vasomotor responses coordinates arteriolar resistances. American Journal of Physiology 256, H832837.
  • Simons D. J. (1978). Response properties of vibrissa units in rat SI somatosensory neocortex. Journal of Neurophysiology 41, 798820.
  • Villringer A. & Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovascular and Brain Metabolism Reviews 7, 240276.
  • Woolsey T. A., Rovainen, C. M., Cox, S. B., Henegar, M. H., Liang, G. E., Liu, D., Moskalenko, Y. E., Sui, J. & Wei, L. (1996). Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cerebral Cortex 6, 647660.
  • Woolsey T. A. & Van der loos, H. (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Research 17, 205242.
  • Yang, G., Chen, G., Ebner, T. J. & Iadecola, C. (1999). Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats. American Journal of Physiology 277, R17601770.
  • Zhang E. T., Mikkelsen, J. D., Fahrenkrug, J., Moller, M., Kronborg, D. & Lauritzen, M. (1991). Prepro-vasoactive intestinal polypeptide-derived peptide sequences in cerebral blood vessels of rats: on the functional anatomy of metabolic autoregulation. Journal of Cerebral Blood Flow and Metabolism 11, 932938.