SEARCH

SEARCH BY CITATION

  • Abi-Gerges, N., Fischmeister, R. & Méry, P.-F. (2001). G-protein mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. Journal of Physiology 531, 117130.
  • Abi-Gerges, N., Tavernier, B., Mebazaa, A., Faivre, V., Paqueron, X., Payen, D., Fischmeister, R. & Méry, P. F. (1999). Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. American Journal of Respiratory and Critical Care Medicine 160, 11961204.
  • Brady A. J. B., Warren, J. B., Poole-Wilson, P. A., Williams, T. J. & Harding, S. E. (1993). Nitric oxide attenuates cardiac myocyte contraction. American Journal of Physiology 265, H176182.
  • Brodde O. E. & Michel, M. C. (1999). Adrenergic and muscarinic receptors in the human heart. Pharmacological Reviews 51, 651689.
  • BÜnemann, M., Gerhardstein, B. L., Gao, T. & Hosey, M. M. (1999). Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the β2 subunit. Journal of Biological Chemistry 274, 3385133854.
  • Butt, E., Nolte, C., Schulz, S., Beltman, J., Beavo, J. A., Jastorff, B. & Walter, U. (1992). Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochemical Pharmacology 43, 25912600.
  • Campbell D. L., Stamler, J. S. & Strauss, H. C. (1996). Redox modulation of L-type calcium channels in ferret ventricular myocytes - Dual mechanism regulation by nitric oxide and S-nitrosothiols. Journal of General Physiology 108, 277293.
  • Chesnais J. M., Fischmeister, R. & Méry, P. F. (1999). Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. Journal of Physiology 518, 449461.
  • De Belder A. J., Radomski, M. W., Why, H. J. F., Richardson, P. J., Bucknall, C. A., Salas, E., Martin, J. F. & Moncada, S. (1993). Nitric oxide synthase activities in human myocardium. Lancet 341, 8485.
  • de Bold A. J., Bruneau, B. G. & Kouroski de bold, M. L. (1996). Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovascular Research 31, 718.
  • Endoh M. & Yamashita, S. (1981). Differential responses to carbachol, sodium nitroprusside, and 8-bromo-guanosine 3′,5′-monophosphate of canine atrial and ventricular muscle. British Journal of Pharmacology 73, 393399.
  • Fischmeister R. & Méry, P. F. (1996). Regulation of cardiac Ca2+ channels by cGMP and NO. In Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters, ed. Morad, M., Ebashi, S., Trautwein, W. & Kurachi, Y., pp. 93105. Kluwer Academic Publishers, Dordrecht , Boston , London .
  • Flesch, M., Kilter, H., Cremers, B., Lenz, O., Sudkamp, M., Kuhnregnier, F. & Bohm, M. (1997). Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. Journal of Pharmacology and Experimental Therapeutics 281, 13401349.
  • Gao, T., Yatani, A., Dell'Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D. & Hosey, M. M. (1997). cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185196.
  • Gross W. L., Bak, M. I., Ingwall, J. S., Arstall, W. A., Smith, T. W., Balligand, J.-L. & Kelly, R. A. (1996). Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proceedings of the National Academy of Sciences of the USA 93, 56045609.
  • Haddad G. E., Sperelakis, N. & Bkaily, G. (1995). Regulation of the calcium slow channel by cyclic GMP dependent protein kinase in chick heart cells. Molecular and Cellular Biochemistry 148, 8994.
  • Hamill O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85100.
  • Han, J., Kim, E., Lee, S. H., Yoo, S., Ho, W. K. & Earm, Y. E. (1998). cGMP facilitates calcium current via cGMP-dependent protein kinase in isolated rabbit ventricular myocytes. Pflügers Archiv 435, 388393.
  • Hartzell H. C. (1988). Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Progress in Biophysics and Molecular Biology 52, 165247.
  • Hartzell H. C. & Fischmeister, R. (1986). Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323, 273275.
  • Haywood G. A., Tsao, P. S., Vonderleyen, H. E., Mann, M. J., Kelling, P. J., Trindade, P. T., Lewis, N. P., Byrne, C. D., Rickenbacher, P. R., Bishopric, N. H., Cooke, J. P., Mckenna, W. J. & Fowler, M. B. (1996). Expression of inducible nitric oxide synthase in human heart failure. Circulation 93, 10871094.
  • Hove-Madsen, L., Méry, P.-F., Jurevicius, J., Skeberdis, A. V. & Fischmeister, R. (1996). Regulation of myocardial calcium channels by cyclic AMP metabolism. Basic Research in Cardiology 91 (suppl. 2), S18.
  • Hu, H., Chiamvimonvat, N., Yamagishi, T. & Marban, E. (1997). Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circulation Research 81, 742752.
  • Kajimoto, K., Hagiwara, N., Kasanuki, H. & Hosoda, S. (1997). Contribution of phosphodiesterase isozymes to the regulation of the L-type calcium current in human cardiac myocytes. British Journal of Pharmacology 121, 15491556.
  • Kase, H., Iwahashi, K., Nakanishi, S., Matsuda, Y., Yamada, K., Takahashi, M., Murakata, C., Sato, A., & Kaneko, M. (1987). K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochemical and Biophysical Research Communications 142, 436440.
  • Kelly R. A., Balligand, J. L. & Smith, T. W. (1996). Nitric oxide and cardiac function. Circulation Research 79, 363380.
  • Kirstein, M., Rivet-Bastide, M., Hatem, S., Bénardeau, A., Mercadier, J. J. & Fischmeister, R. (1995). Nitric oxide regulates the calcium current in isolated human atrial myocytes. Journal of Clinical Investigation 95, 794802.
  • Kojda G. & Kottenberg, K. (1999). Regulation of basal myocardial function by NO. Cardiovascular Research 41, 514523.
  • Kojda, G., Kottenberg, K., Nix, P., Schluter, K. D., Piper, H. M. & Noack, E. (1996). Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circulation Research 78, 91101.
  • Komalavila P. & Lincoln, T. M. (1996). Phosphorylation of the inositol 1,4,5-triphosphate receptor. Journal of Biological Chemistry 271, 2193321938.
  • Kumar, R., Joyner, R. W., Komalavilas, P. & Lincoln, T. M. (1999). Analysis of expression of cGMP-dependent protein kinase in rabbit heart cells. Journal of Pharmacology and Experimental Therapeutics 291, 967975.
  • Kumar, R., Namiki, T. & Joyner, R. W. (1997). Effects of cGMP on L-type calcium current of adult and newborn rabbit ventricular cells. Cardiovascular Research 33, 573582.
  • Levi R. C., Alloatti, G. & Fischmeister, R. (1989). Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers Archiv 413, 685687.
  • Lohmann S. M., Fischmeister, R. & Walter, U. (1991). Signal transduction by cGMP in heart. Basic Research in Cardiology 86, 503514.
  • Mcdonald T. F., Pelzer, S., Trautwein, W. & Pelzer, D. (1994). Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiological Reviews 74, 365507.
  • Méry P. F., Lohmann, S. M., Walter, U. & Fischmeister, R. (1991). Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proceedings of the National Academy of Sciences of the USA 88, 11971201.
  • Méry P. F., Pavoine, C., Belhassen, L., Pecker, F. & Fischmeister, R. (1993). Nitric oxide regulates cardiac Ca2+ current - Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. Journal of Biological Chemistry 268, 2628626295.
  • Méry P. F., Pavoine, C., Pecker, F. & Fischmeister, R. (1995). Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Molecular Pharmacology 48, 121130.
  • Mohan, P., Sys, S. U. & Brutsaert, D. L. (1995). Positive inotropic effect of nitric oxide in the myocardium. International Journal of Cardiology 50, 233237.
  • Morad M. & Cleemann, L. (1987). Role of Ca2+ channel in development of tension in heart muscle. Journal of Molecular and Cellular Cardiology 19, 527553.
  • Nawrath, H. (1976). Cyclic AMP and cyclic GMP may play opposing roles in influencing force of contraction in mammalian myocardium. Nature 262, 509511.
  • Ono K. & Trautwein, W. (1991). Potentiation by cyclic GMP of β-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. Journal of Physiology 443, 387404.
  • Paulus W. J., Kastner, S., Vanderheyden, M., Shah, A. M. & Drexler, H. (1997). Myocardial contractile effects of l-arginine in the human allograft. Journal of the American College of Cardiology 29, 13321338.
  • Paulus W. J. & Shah, A. M. (1999). NO and cardiac diastolic function. Cardiovascular Research 43, 595606.
  • Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., Benardeau, A., Mercadier, J. J. & Fischmeister, R. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation 99, 27102718.
  • Sandirasegarane L. & Diamond, J. (1999). The nitric oxide donors, SNAP and DEA/NO, exert a negative inotropic effect in rat cardiomyocytes which is independent of cyclic GMP elevation. Journal of Molecular and Cellular Cardiology 31, 799808.
  • Schulz, R., Nava, E. & Moncada, S. (1992). Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. British Journal of Pharmacology 105, 575580.
  • Shah A. M. & Maccarthy, P. A. (2000). Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology and Therapeutics 86, 4986.
  • Shah A. M., Spurgeon, H. A., Sollott, S. J., Talo, A. & Lakatta, E. G. (1994). 8-Bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circulation Research 74, 970978.
  • Shirayama T. & Pappano, A. J. (1996). Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes. Journal of Pharmacology and Experimental Therapeutics 279, 12741281.
  • Skeberdis V. A., Jurevicius, J. & Fischmeister, R. (1997). Beta-2 adrenergic activation of L-type Ca2+ current in cardiac myocytes. Journal of Pharmacology and Experimental Therapeutics 283, 452461.
  • Smith J. A., Shah, A. M. & Lewis, M. J. (1991). Factors released from endocardium of the ferret and pig modulate myocardial contraction. Journal of Physiology 439, 114.
  • Stoclet, J.-C., Keravis, T., Komas, N. & Lugnier, C. (1995). Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiovascular diseases. Expert Opinion on Investigational Drugs 4, 10811100.
  • Striessnig, J. (1999). Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cellular Physiology and Biochemistry 9, 242269.
  • Sumii K. & Sperelakis, N. (1995). cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. Circulation Research 77, 803812.
  • Thakkar, J., Tang, S.-B., Sperelakis, N. & Wahler, G. M. (1988). Inhibition of cardiac slow action potentials by 8-bromo-cyclic GMP occurs independent of changes in cyclic AMP levels. Canadian Journal of Physiology and Pharmacology 66, 10921095.
  • Thoenes, M., Forstermann, U., Tracey, W. R., Bleese, N. M., Nussler, A. K., Scholz, H. & Stein, B. (1996). Expression of inducible nitric oxide synthase in failing and non-failing human heart. Journal of Molecular and Cellular Cardiology 28, 165169.
  • Trautwein W. & Trube, G. (1976). Negative inotropic effect of cyclic GMP in cardiac fiber fragments. Pflügers Archiv 366, 293295.
  • Vandecasteele, G., Eschenhagen, T. & Fischmeister, R. (1998a). Role of the NO-cGMP pathway in the muscarinic regulation of the L-type Ca2+ current in human atrial myocytes. Journal of Physiology 506, 653663.
  • Vandecasteele, G., Verde, I. & Fischmeister, R. (1998b). cGMP regulation of the L-type Ca2+ current in human atrial myocytes. Journal of Physiology 511.P , 8081 P .
  • Vejlstrup N. G., Bouloumie, A., Boesgaard, S., Andersen, C. B., Nielsenkudsk, J. E., Mortensen, S. A., Kent, J. D., Harrison, D. G., Busse, R. & Aldershvile, J. (1998). Inducible nitric oxide synthase (iNOS) in the human heart: Expression and localization in congestive heart failure. Journal of Molecular and Cellular Cardiology 30, 12151223.
  • Wahler G. M. & Dollinger, S. J. (1995). Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. American Journal of Physiology 37, C4554.
  • Wahler G. M., Rusch, N. J. & Sperelakis, N. (1990). 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Canadian Journal of Physiology 68, 531534.
  • Walsh D. A., Angelos, K. L., Van Patten, S. M., Glass, D. B. & Garetto, L. P. (1990). In Peptides and Protein Phosphorylation, ed. Kemp, B. E., pp. 4384. CRC Press, Boca Raton , FL , USA .
  • Wei, C., Jiang, S., Lust, J. A., Daly, R. C. & Mcgregor, C. G. (1996). Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clinic Proceedings 71, 346350.
  • Wolin M. S., Hintze, T. H., Shen, W., Mohazzab-H, K. M. & Xie, Y.-W. (1997). Involvement of reactive oxygen and nitrogen species in signalling mechanisms that control tissue respiration in muscle. Biochemical Society Transactions 25, 934939.
  • Xu, L., Eu, J., Meissner, G. & Stamler, J. (1998). Activation of the cardiac release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234237.
  • Yang X. C., Chowdhury, N., Cai, B. L., Brett, J., Marboe, C., Sciacca, R. R., Michler, R. E. & Cannon, P. J. (1994). Induction of myocardial nitric oxide synthase by cardiac allograft rejection. Journal of Clinical Investigation 94, 714721.
  • Zanzinger, J. (1999). Role of nitric oxide in the neural control of cardiovascular function. Cardiovascular Research 43, 639649.