SEARCH

SEARCH BY CITATION

  • Ahern G. P. & Laver, D. R. (1998). ATP inhibition and rectification of a Ca2+-activated anion channel in sarcoplasmic reticulum of skeletal muscle. Biophysical Journal 74, 23352351.
  • Allen D. G., Lännergren, J. & Westerblad, H. (1995). Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Experimental Physiology 80, 497527.
  • Andrade F. H., Reid, M. B., Allen, D. G. & Westerblad, H. (1998). Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. Journal of Physiology 509, 565575.
  • Balog E. M., Fruen, B. R., Kane, P. K. & Louis, C. F. (2000). Mechanisms of Pi regulation of the skeletal muscle SR Ca2+ release channel. American Journal of Physiology 278, C601611.
  • Blazev R. & Lamb, G. D. (1999). Low [ATP] and elevated [Mg2+] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres. Journal of Physiology 520, 203215.
  • Bruton J. D., Wretman, C., Katz, A. & Westerblad, H. (1997). Increased tetanic force and reduced myoplasmic [Pi] following a brief series of tetani in mouse soleus muscle. American Journal of Physiology 272, C870874.
  • Dahlstedt A. J., Katz, A., Wieringa, B. & Westerblad, H. (2000). Is creatine kinase responsible for fatigue? Studies of skeletal muscle deficient of creatine kinase. FASEB Journal 14, 982990.
  • Dantzig J. A., Goldman, Y. E., Millar, N. C., Lacktis, J. & Homsher, E. (1992). Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. Journal of Physiology 451, 247278.
  • Dawson M. J., Gadian, D. G. & Wilkie, D. R. (1980). Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. Journal of Physiology 299, 465484.
  • Fitts R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 4994.
  • Fruen B. R., Mickelson, J. R., Shomer, N. H., Roghair, T. J. & Louis, C. F. (1994). Regulation of the sarcoplasmic reticulum ryanodine receptor by inorganic phosphate. Journal of Biological Chemistry 269, 192198.
  • Fryer M. W., Owen, V. J., Lamb, G. D. & Stephenson, D. G. (1995). Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. Journal of Physiology 482, 123140.
  • Godt R. E. & Nosek, T. M. (1989). Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. Journal of Physiology 412, 155180.
  • Gordon A. M., Homsher, E. & Regnier, M. (2000). Regulation of contraction in striated muscle. Physiological Reviews 80, 853924.
  • InT́ zandt H. J., Oerlemans, F., Wieringa, B. & Heerschap, A. (1999). Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo31P nuclear magnetic resonance spectroscopy. NMR in Biomedicine 12, 327334.
  • Klein M. G., Kovacs, L., Simon, B. J. & Schneider, M. F. (1991). Decline of myoplasmic Ca2+, recovery of calcium release and sarcoplasmic Ca2+ pump properties in frog skeletal muscle. Journal of Physiology 441, 639671.
  • Lännergren J. & Westerblad, H. (1987). The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. Journal of Physiology 390, 285293.
  • Martyn D. A. & Gordon, A. M. (1992). Force and stiffness in glycerinated rabbit psoas fibers. Effects of calcium and elevated phosphate. Journal of General Physiology 99, 795816.
  • Millar N. C. & Homsher, E. (1990). The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. Journal of Biological Chemistry 265, 2023420240.
  • Mulligan I. P., Palmer, R. E., Lipscomb, S., Hoskins, B. & Ashley, C. C. (1999). The effect of phosphate on the relaxation of frog skeletal muscle. Pflügers Archiv 437, 393399.
  • Pate E. & Cooke, R. (1989). Addition of phosphate to active muscle fibers probes actomyosin states within the powerstroke. Pflügers Archiv 414, 7381.
  • Phillips S. K., Wiseman, R. W., Woledge, R. C. & Kushmerick, M. J. (1993). The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle. Journal of Physiology 462, 135146.
  • Posterino G. S. & Fryer, M. W. (1998). Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat. Journal of Physiology 512, 97108.
  • Potma E. J. & Stienen, G. J. M. (1996). Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate. Journal of Physiology 496, 112.
  • Puchert, E., Coupland, M. E. & Ranatunga, K. W. (1999). Phosphate-induced depression of active tension in rabbit skinned muscle fibres at different temperatures. Journal of Physiology 518.P, 88 P .
  • Raymackers J. M., Gailly, P., Schoor, M. C., Pette, D., Schwaller, B., Hunziker, W., Celio, M. R. & Gillis, J. M. (2000). Tetanus relaxation of fast skeletal muscles of the mouse made parvalbumin deficient by gene inactivation. Journal of Physiology 527, 355364.
  • Sahlin, K., Edstrom, L. & Sjoholm, H. (1983). Fatigue and phosphocreatine depletion during carbon dioxide-induced acidosis in rat muscle. American Journal of Physiology 245, C1520.
  • Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J. & Wieringa, B. (1997). Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89, 93103.
  • Steeghs, K., Oerlemans, F., de Haan, A., Heerschap, A., Verdoodt, L., de Bie, M., Ruitenbeek, W., Benders, A., Jost, C., van Deursen, J., Tullson, P., Terjung, R., Jap, P., Jacob, W., Pette, D. & Wieringa, B. (1998). Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Molecular and Cellular Biochemistry 184, 183194.
  • Stienen G. J. M., Van Graas, I. A. & Elzinga, G. (1993). Uptake and caffeine-induced release of calcium in fast muscle fibers of Xenopus laevis: effects of MgATP and Pi. American Journal of Physiology 265, C650657.
  • Swartz D. R., Moss, R. L. & Greaser, M. L. (1996). Calcium alone does not fully activate the thin filament for S1 binding to rigor myofibrils. Biophysical Journal 71, 18911904.
  • Tullson P. C., Rush, J. W., Wieringa, B. & Terjung, R. L. (1998). Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice. American Journal of Physiology 274, C14111416.
  • Westerblad H. & Allen, D. G. (1991). Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. Journal of General Physiology 98, 615635.
  • Westerblad H. & Allen, D. G. (1992). Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle. Journal of Physiology 449, 4971.
  • Westerblad H. & Allen, D. G. (1993a). The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. Journal of Physiology 466, 611628.
  • Westerblad H. & Allen, D. G. (1993b). The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. Journal of Physiology 468, 729740.
  • Westerblad H. & Allen, D. G. (1994). The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone. Journal of Physiology 474, 291301.
  • Westerblad H. & Allen, D. G. (1996a). Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. Biophysical Journal 71, 908917.
  • Westerblad H. & Allen, D. G. (1996b). The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pflügers Archiv 431, 964970.
  • Westerblad, H., Bruton, J. D. & Lännergren, J. (1997). The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. Journal of Physiology 500, 193204.
  • Westerblad, H., Lännergren, J. & Allen, D. G. (1997). Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and mouse. Contribution of [Ca2+]i and cross-bridges. Journal of General Physiology 109, 385399.