SEARCH

SEARCH BY CITATION

  • Auer, R. N. & Siesjo, B. (1988). Biological differences between ischaemia, hypoglycaemia and epilepsy. Annals of Neurology 24, 699707.
  • Aynsley-Green, A., Dunne, M. J., James, R. F. L. & Lindley, K. J. (1998). Ions and genes in persistent hyperinsulinaemic hypoglycaemia of infancy; a commentary on the implications for tailoring treatment to disease pathogenesis. Journal of Pediatric Endocrinology and Metabolism 11, suppl. 1, 121129.
  • Bröer, S., Bröer, A., Schneider, H.-P., Stegen, C., Halestrap, A. P. & Deitmer, J. W. (1999). Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochemical Journal 341, 529535.
  • Broer, S., Schneider, H. P., Broer, A., Rahman, B., Hamprecht, B. & Deitmer, J. W. (1998). Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH Biochemical Journal 333, 167174.
  • Cremer, J. E. (1982). Substrate utilization and brain development. Journal of Cerebral Blood Flow and Metabolism. 2, 394407.
  • Gähwiler, B. H., Capogna, M., Debanne, D., Mckinney, R. A. & Thompson, S. M. (1997). Organotypic slice cultures: a technique has come of age. Trends in Neurosciences 2, 471477.
  • Gao, Z., Huang, K., Yang, X. & Xu, H. (2000). Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochimica et Biophysica Acta1472, 643650.
  • Garcia, C. K., Li, X., Luna, J. & Francke, U. (1994). cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12. Genomics 23, 500503.
  • Halestrap, A. P. (1975). The mitochondrial pyruvate carrier. Kinetics and specificity of substrates and inhibitors. Biochemical Journal 148, 8596.
  • Halestrap, A. P. & Denton, R. M. (1974). Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate. Biochemical Journal 138, 313316.
  • Halestrap, A. P. & Price N. T. (1999). The proton linked monocarboxlate transporter (MCT) family: structure, function and regulation. Biochemical Journal 343, 281299.
  • Hassel B. & Brathe A. (2000). Cerebral metabolism of lactate in vivo: Evidence for neuronal pyruvate carboxylation. Journal of Cerebral Blood Flow and Metabolism 20, 327336.
  • Izumi, Y., Benz, A. M., Katsuki, H. & Zorumski, C. F. (1997). Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. Journal of Neuroscience 17, 94489457.
  • Lin, R. Y., Vera, J. C., Chaganti, R. S. K. & Golde, D. W. (1998). Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. Journal of Biological Chemistry 273, 2895928965.
  • Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K. & Mattson, M. P. (1997). Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. Journal of Neuroscience 17, 10461054.
  • Nehlig, A. & Pereira deVasconcelos, A. P. (1993) Glucose and ketone body utilization by the brain of neonatal rats. Progress in Neurobiology 40, 163221.
  • Pellerin, L., Pellegri, G., Martin, J.-L. & Magistretti, P. J. (1998). Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proceedings of the National Academy of Sciences of the USA 95, 39903995.
  • Perros, P., Deary, I. J., Sellar, R. J. & Frier, B. M. (1997). Magnetic resonance imaging and spectroscopy of the brain in IDDM patients with and without a history of severe hypoglycaemia. Diabetes Care, 20, 10131018.
  • Price, N. T., Jackson, V. N. & Halestrap, A. P. (1998). Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochemical Journal 329, 321328.
  • Pringle, A. K., Iannotti, F., Wilde G. J. C., Chad, J. E., Seeley, P. J. & Sundstrom, L. E. (1997). Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Research 755, 3646.
  • Pringle, A. K., Sim, L., Kennedy, J., Wilde, G. J. C., Benham, C. D., Iannotti, F. & Sundstrom, L. E. (1996). The selective N-Type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal slice cultures. Stroke 27, 21242130.
  • Schurr, A., Miller, J. J., Payne, R. S. & Rigor B. M. (1999). An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. Journal of Neuroscience 19, 3439.
  • Schurr, A., Payne, R. S., Miller, J. J. & Rigor, B. M. (1997a) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon re-oxygenation: an in vitro study. Brain Research 744, 105111.
  • Schurr, A., Payne, R. S., Miller, J. J. & Rigor B. M. (1997b). Glia are the main source of lactate utilised by neurons for recovery of function post-hypoxia. Brain Research 774, 221224.
  • Schurr, A., West, C. A. & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240, 13261328.
  • Stoppini, L., Buchs, P. A. & Muller, D. (1991). A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods 37, 173182.
  • Tsacopoulos, M., Evequoz-Mercier, V., Perrottet, P. & Buchner, E. (1988). Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate. Proceedings of the National Academy of Sciences of the USA 85, 87278731.
  • Tsacopoulos, M. & Magistretti, P. J. (1996). Metabolic coupling between glia and neurons. Journal of Neuroscience 16, 877885.
  • Vicario, C., Arizmendi, C., Malloch, G., Clark, J. B. & Medina, J. M. (1991). Lactate utilization by isolated cells from early neonatal rat brain. Journal of Neurochemistry 57, 17001707.