SEARCH

SEARCH BY CITATION

  • Abedi H. & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesion of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry 272, 1544215451.
  • Albelda M. S., Daise, M., Levine, E. M. & Buck, C. A. (1989). Identification and characterization of cell-substratum adhesion receptors on cultured human endothelial cells. Journal of Clinical Investigation 83, 19922002.
  • Burridge K., Fath, K., Kelly, T., Nuckolls, G. & Turner, C. (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annual Review of Cell Biology 4, 487525.
  • Cheng Y., Cluman, R. I., Enenstein, J., Waleh, H., Pytela, R. & Kramer, R. H. (1991). The integrin complex αvβ3 participates in the adhesion of microvascular endothelial cells to fibronectin. Experimental Cell Research 194, 6977.
  • Cheng Y. & Kramer, R. H. (1989). Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. Journal of Cellular Physiology 139, 275286.
  • Curtis T. M., McKeown-Longo, P. J., Vincent, P. A., Homan, S. M., Wheatley, E. M. & Saba, T. M. (1995). Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-α5β1, or TNF-α exposure. American Journal of Physiology 269, L248260.
  • Davis G. E., Bayless, K. J., Davis, M. J. & Meininger, G. A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. American Journal of Pathology 156, 14891498.
  • Dejana E., Colella, S., Conforti, G., Abbadini, M., Gaboli, M. & Marchisio, P. C. (1988). Fibronectin and vitronectin regulate the organization of their respective arg-gly-asp adhesion receptors in cultured human endothelial cells. Journal of Cell Biology 107, 12151223.
  • Dejana E., Lampugnani, M. G., Giorgi, M., Gaboli, M. & Marchisio, P. C. (1990). Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor. Blood 75, 15091517.
  • Garcia J. G. N & Schaphorst, K. L. (1995). Regulation of endothelial cell gap formation and paracellular permeability. Journal of Investigative Medicine 43, 117126.
  • Hayman E. G., Pierschbacher, M. D. & Rouslahti, E. (1985). Detachment of cells from culture substrate by soluble fibronectin peptides. Journal of Cell Biology 100, 19401954.
  • Huxley V. H., Curry, F. E. & Adamson, R. H. (1987). Quantitative fluorescence microscopy on single capillaries: α-lactalbumin transport. American Journal of Physiology 252, H188197.
  • Kajimura M. & Curry, F. E. (1999). Endothelial cell shrinkage increases permeability through a Ca2+-dependent pathway in single frog mesenteric microvessels. Journal of Physiology 518, 227238.
  • Lampugnani M. G., Resnati, M., Dejana, E. & Marchisio, P. C. (1991). The role of integrins in the maintenance of endothelial monolayer integrity. Journal of Cell Biology 112, 479490.
  • Lum H. & Malik, A. B. (1994). Regulation of vascular endothelial barrier function. American Journal of Physiology 267, L223241.
  • Luscinskas F. W. & Lawler, J. (1994). Integrins as dynamic regulators of vascular function. FASEB Journal 8, 929938.
  • Pierschbacher M. D. & Rouslahti, E. (1987). Influence of stereochemistry of the sequence arg-gly-asp-xaa on binding specificity in cell adhesion. Journal of Biological Chemistry 262, 1729417298.
  • Qiao R., Yan, W., Lum, H. & Malik, A. B. (1995). Arg-gly-asp peptide increases endothelial hydraulic conductivity: comparison with thrombin response. American Journal of Physiology 269, C110117.
  • Tinsley J. H., Wu, M. H., Ma, W., Taulman, A. C. & Yuan, S. Y. (1999). Activated neutrophils induce hyperpermeability and phosphorylation of adherense junction proteins in coronary venular endothelial cells. Journal of Biological Chemistry 274, 2493024943.
  • Wu H. M, Huang, Q., Yuan, Y. & Granger, H. J. (1996). VEGF induces NO-dependent hyperpermeability in coronary venules. American Journal of Physiology 271, H27352739.
  • Wu H. M, Yuan, Y., Zawieja, D. C., Tinsley, J. & Granger, H. J. (1999). Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. American Journal of Physiology 276, H535542.
  • Yang J. T., Rayburn, H. & Hynes, R. O. (1993). Embryonic mesodermal defects in α5 integrin-deficient mice. Development 119, 10931105.
  • Yuan Y., Chilian, W. M., Granger, H. J. & Zaweija, D. C. (1993a). Permeability to albumin in isolated coronary venules. American Journal of Physiology 265, H543552.
  • Yuan Y., Granger, H. J., Zaweija, D. C. & Chilian, W. M. (1993b). Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. American Journal of Physiology 264, H17341739.
  • Yuan Y., Huang, Q. & Wu, H. M. (1997). Myosin light chain phosphorylation: modulation of basal and agonist-stimulated venular permeability. American Journal of Physiology 272, H14371443.
  • Yuan Y., Meng, F. Y., Huang, Q., Hawker, J. & Wu, H. M. (1998). Tyrosine phosphorylation of paxillin/pp125FAK and microvascular endothelial barrier function. American Journal of Physiology 275, H8493.