SEARCH

SEARCH BY CITATION

  • Al Nasser I. & Crompton, M. (1986). The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochemical Journal 239, 1929.
  • Brocard J. B., Rajdev, S. & Reynolds, I. J. (1993). Glutamate-induced increases in intracellular free Mg2+ in cultured cortical neurons. Neuron 11, 751757.
  • Budd S. L. & Nicholls, D. G. (1996a). A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. Journal of Neurochemistry 66, 403411.
  • Budd S. L. & Nicholls, D. G. (1996b). Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. Journal of Neurochemistry 67, 22822291.
  • Castilho R. F., Hansson, O., Ward, W. M., Budd, S. L. & Nicholls, D. G. (1998). Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. Journal of Neuroscience 18, 1027710286.
  • Choi D. W. (1987). Ionic dependence of glutamate neurotoxicity. Journal of Neuroscience 7, 369379.
  • Choi D. W., Maulucci-Gede, M. & Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. Journal of Neuroscience 7, 357368.
  • Colegrove S. L., Albrecht, M. A. & Friel, D. D. (2000). Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. Journal of General Physiology 115, 351370.
  • Dessi F., Ben-Ari, Y. & Charriaut-Marlangue, C. (1995). Ruthenium red protects against glutamate-induced neuronal death in cerebellar culture. Neuroscience Letters 201, 5356.
  • Duchen M. R. (1990). Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. Journal of Physiology 424, 387409.
  • Duchen M. R. (1999). Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. Journal of Physiology 516, 117.
  • Grynkiewicz G., Poenie, M. & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260, 34403450.
  • Hartley D. M., Kurth, M. C., Bjerkness, L., Weiss, J. H. & Choi, D. W. (1993). Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlated with subsequent neuronal degeneration. Journal of Neuroscience 13, 19932000.
  • Headley P. M. & Grillner, S. (1990). Excitatory amino acids and synaptic transmission: evidence for a physiological function. Trends in Pharmacological Sciences-A special report 1991, 3036.
  • Hunter D. R. & Haworth, R. A. (1979). The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Archives in Biochemistry and Biophysics 195, 453459.
  • Hüser J., Rechenmacher, C. E. & Blatter, L. A. (1998). Imaging the permeability pore transition in single mitochondria. Biophysical Journal 74, 21292137.
  • Hyrc K., Handran, S. D., Rothman, S. M. & Goldberg, M. P. (1997). Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. Journal of Neuroscience 17, 66696677.
  • Hyrc K. L., Bownik, J. M. & Goldberg, M. P. (2000). Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. Cell Calcium 27, 7586.
  • Ishijima S., Sonoda, T. & Tatibana, M. (1991). Mitogen-induced early increase in cytosolic free Mg2+ concentrations in single Swiss 3T3 fibroblasts. American Journal of Physiology 261, C10741080.
  • Johnson J. W. & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529531.
  • Keelan J., Vergun, O. & Duchen, M. R. (1999). Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. Journal of Physiology 520, 797813.
  • Khodorov B., Pinelis, V., Vergun, O., Storozhevykh, T. & Vinskaya, N. (1996). Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Letters 397, 230234.
  • Kiedrowski L. & Costa, E. (1995). Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Molecular Pharmacology 47, 140147.
  • Lehninger A. L. (1974). Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proceedings of the National Academy of Sciences of the USA 71, 15201524.
  • Leyssens A., Nowicky, A. V., Patterson, L., Crompton, M. & Duchen, M. R. (1996). The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. Journal of Physiology 496, 111128.
  • Manev H., Favaron, M., Guidotti, A. & Costa, E. (1989). Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Molecular Pharmacology 36, 106112.
  • Nicholls D. G. (1978). The regulation of extra-mitochondrial free Ca2+ by rat liver mitochondria. Biochemical Journal 176, 463474.
  • Nicholls D. G. & ÅKerman, K. E. O. (1982). Mitochondrial calcium transport. Biochimica et Biophysica Acta 683, 5788.
  • Nicholls D. G. & Budd, S. L. (2000). Mitochondria and neuronal survival. Physiological Reviews 80, 315360.
  • Peng T. I. & Greenamyre, J. T. (1998). Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Molecular Pharmacology 53, 974980.
  • Peng T. I., Jou, M. J., Sheu, S. S. & Greenamyre, J. T. (1998). Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Experimental Neurology 149, 112.
  • Pivovarova N. B., Hongpaisan, J., Andrews, S. B. & Friel, D. D. (1999). Depolarization-induced mitochondrial Ca2+ accumulation in sympathetic neurons: spatial and temporal characteristics. Journal of Neuroscience 19, 63726384.
  • Rajdev S. & Reynolds, I. J. (1993). Calcium green-5N, a novel fluorescent probe for monitoring high intracellular free Ca2+ concentrations associated with glutamate excitotoxicity in cultured rat brain neurons. Neuroscience Letters 162, 149152.
  • Raju B., Murphy, E., Levy, L. A., Hall, R. D. & London, R. E. (1989). A fluorescent indicator for measuring cytosolic free magnesium. American Journal of Physiology 256, C540548.
  • Randall R. D. & Thayer, S. A. (1992). Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. Journal of Neuroscience 12, 18821895.
  • Rosenmund C., Feltz, A. & Westbrook, G. L. (1995). Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. Journal of Neurophysiology 73, 427430.
  • Rothman S. M. & Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic-ischaemic brain damage. Annals of Neurology 19, 105111.
  • Sattler R., Charlton, M. P., Hafner, M. & Tymianski, M. (1998). Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. Journal of Neurochemistry 71, 23492364.
  • Schinder A. F., Olson, E. C., Spitzer, N. C. & Montal, M. (1996). Mitochondrial dysfunction is a primary event in glutamate excitotoxicity. Journal of Neuroscience 16, 61256133.
  • Scott I. D. & Nicholls, D. G. (1980). Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochemical Journal 186, 2133.
  • Stout A. K., Li-Smerin, Y., Johnson, J. W. & Reynolds. I. J. (1996). Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture. Journal of Physiology 492, 641657.
  • Stout A. K., Raphael, H. M., Kanterewicz, B. I., Klann, E. & Reynolds, I. J. (1998). Glutamate-induced neuron death requires mitochondrial calcium uptake. Nature Neuroscience 1, 366373.
  • Stout A. K. & Reynolds, I. J. (1999). High-affinity calcium indicators underestimate increases in intracellular calcium concentrations associated with excitotoxic glutamate stimulations. Neuroscience 89, 91100.
  • Taylor C. P., Weber, M. L., Gaughan, C. L., Lehning, E. J. & Lopachin, R. M. (1999). Oxygen/glucose deprivation in hippocampal slices: altered intraneuronal elemental composition predicts structural and functional damage. Journal of Neuroscience 19, 619629.
  • Thayer S. A. & Miller, R. J. (1990). Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. Journal of Physiology 425, 85115.
  • Vergun O., Keelan, J., Khodorov, B. I. & Duchen, M. R. (1999). Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. Journal of Physiology 519, 451466.
  • White R. J. & Reynolds, I. J. (1995). Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. Journal of Neuroscience 15, 13181328.
  • White R. J. & Reynolds, I. J. (1996). Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. Journal of Neuroscience 16, 56885697.
  • White R. J. & Reynolds, I. J. (1997). Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. Journal of Physiology 498, 3147.
  • Zoccarato F. & Nicholls, D. G. (1982). The role of phosphate in the regulation of the Ca2+ efflux pathway of liver mitochondria. European Journal of Biochemistry 127, 333338.