SEARCH

SEARCH BY CITATION

  • Ahern, G. P. & Laver, D. R. (1998). ATP inhibition and rectification of a Ca2+-activated anion channel in sarcoplasmic reticulum of skeletal muscle. Biophysical Journal 74, 23352351.
  • Allen, D. G., Lännergren, J. & Westerblad, H. (1995). Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Experimental Physiology 80, 497527.
  • Arnolda, L., Brosnan, J., Rajagopalan, B. & Radda, G. K. (1991). Skeletal muscle metabolism in heart failure in rats. American Journal of Physiology 261, H434442.
  • Balnave, C. D. & Allen, D. G. (1998). Evidence for Na+/Ca2+ exchange in intact single skeletal muscle fibers from the mouse. American Journal of Physiology 274, C940946.
  • Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71, 140150.
  • Cady, E. B., Jones, D. A., Lynn, J. & Newham, D. J. (1989). Changes in force and intracellular metabolites during fatigue of human skeletal muscle. Journal of Physiology 418, 311325.
  • Chin, E. R. & Allen, D. G. (1997). Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. Journal of Physiology 498, 1729.
  • Cooke, R. & Pate, E. (1985). The effects of ADP and phosphate on the contraction of muscle fibers. Biophysical Journal 48, 789798.
  • Dahlstedt, A. J., Katz, A. & Westerblad, H. (2001). Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. Journal of Physiology 533, 379388.
  • Dahlstedt, A. J., Katz, A., Wieringa, B. & Westerblad, H. (2000). Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. FASEB Journal 14, 982990.
  • Dahlstedt, A. J. & Westerblad, H. (2001). Inhibition of creatine kinase reduces the fatigue-induced decrease of tetanic [Ca2+]i in mouse skeletal muscle. Journal of Physiology 533, 639649.
  • Dawson, M. J., Gadian, D. G. & Wilkie, D. R. (1978). Muscle fatigue investigated by phosphorus nuclear magnetic resonance. Nature 274, 861866.
  • Dawson, M. J., Gadian, D. G. & Wilkie, D. R. (1980a). Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. Journal of Physiology 299, 465484.
  • Dawson, M. J., Gadian, D. G. & Wilkie, D. R. (1980b). Studies of the biochemistry of contracting and relaxing muscle by the use of 31P n. m.r. in conjunction with other techniques. Philosophical Transactions of the Royal Society B 289, 445455.
  • Duke, A. M. & Steele, D. S. (1998). Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres. Journal of Physiology 513, 4353.
  • Duke, A. M. & Steele, D. S. (2000). Characteristics of phosphate-induced Ca2+ efflux from the SR in mechanically skinned rat skeletal muscle fibers. American Journal of Physiology — Cell Physiology 278, C126135.
  • Eberstein, A. & Sandow, A. (1963). Fatigue mechanisms in muscle fibers. In The Effect of Use and Disuse on the Neuromuscular Functions, ed. Gutman, E. & Hink, P., pp. 515526. Elsevier, Amsterdam .
  • Favero, T. G. (1999). Sarcoplasmic reticulum Ca2+ release and muscle fatigue. Journal of Applied Physiology 87, 471483.
  • Fitts, R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 4994.
  • Fruen, B. R., Mickelson, J. R., Shomer, N. H., Roghair, T. R. & Louis, C. F. (1994). Regulation of the sarcoplasmic reticulum ryanodine receptor by inorganic phosphate. Journal of Biological Chemistry 269, 192198.
  • Fryer, M. W., Owen, V. J., Lamb, G. D. & Stephenson, D. G. (1995). Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. Journal of Physiology 482, 123140.
  • Fryer, M. W., West, J. M. & Stephenson, D. G. (1997). Phosphate transport into the sarcoplasmic reticulum of skinned fibres from rat skeletal muscle. Journal of Muscle Research and Cell Motility 18, 161167.
  • Golovina, V. A. & Blaustein, M. P. (1997). Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 16431648.
  • Gonzalez-Serratos, H., Somlyo, A. V., McClellan, G., Shuman, H., Borrero, L. M. & Somlyo, A. P. (1978). Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proceedings of the National Academy of Sciences of the USA 75, 13291333.
  • Hasselbach, W. (1964). Relaxing factor and the relaxation of muscle. Progress in Biophysics and Biophysical Chemistry 14, 167222.
  • Kabbara, A. A. & Allen, D. G. (1999). The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. Journal of Physiology 519, 169176.
  • Kabbara, A. A. & Allen, D. G. (2001). The use of fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. Journal of Physiology 534, 8797.
  • Kabbara, A. A., Nguyen, L. T., Stephenson, G. M. M. & Allen, D. G. (2000). Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. Journal of Muscle Research and Cell Motility 21, 481489.
  • Kushmerick, M. J. & Meyer, R. A. (1985). Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance. American Journal of Physiology 248, C542549.
  • Kushmerick, M. J., Moerlands, T. S. & Wiseman, R. W. (1992). Mammalian skeletal muscle fibres distinguished by contents of phosphocreatine, ATP and Pi. Proceedings of the National Academy of Sciences of the USA 89, 75217525.
  • Lännergren, J. & Westerblad, H. (1991). Force decline due to fatigue and intracellular acidification in isolated fibres from mouse skeletal muscle. Journal of Physiology 434, 307322.
  • Lännergren, J., Westerblad, H. & Bruton, J. D. (2001). Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions. Journal of Muscle Research and Cell Motility, (in the Press).
  • Laver, D. R., Lenz, G. K. E. & Dulhunty, A. F. (2001). Phosphate ion channels in the sarcoplasmic reticulum of rabbit skeletal muscle. Journal of Physiology 535, 715728.
  • Lunde, P. K., Dahlstedt, A. J., Bruton, J. D., Lännergren, J., Thoren, P., Sejersted, O. M. & Westerblad, H. (2001a). Contraction and intracellular Ca2+ handling in isolated skeletal muscle of rats with congestive heart failure. Circulation Research 88, 12991305.
  • Lunde, P. K., Sjaastad, I., Schiotz Thorud, H. M. & Sejersted, O. M. (2001b). Skeletal muscle disorders in heart failure. Acta Physiologica Scandinavica 171, 277294.
  • MacLennan, D. H. & Holland, P. C. (1975). Calcium transport in the sarcoplasmic reticulum. Annual Review of Biophysics and Bioengineering 4, 377403.
  • Massie, B. M., Conway, M., Yonge, R., Frostick, S., Sleight, P., Ledingham, J., Radda, G. & Rajagopalan, B. (1987). 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. American Journal of Cardiology 60, 309315.
  • Millar, N. C. & Homsher, E. (1990). The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers; a steady-state and transient kinetic study. Journal of Biological Chemistry 265, 2023420240.
  • Perreault, C. L., Gonzalez-Serratos, H., Litwin, S. E., Sun, X., Franzini-Armstrong, C. & Morgan, J. P. (1993). Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circulation Research 73, 405412.
  • Posterino, G. S. & Fryer, M. W. (1998). Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat. Journal of Physiology 512, 97108.
  • Shmigol, A. V., Eisner, D. A. & Wray, S. (2001). Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca2+] in rat uterine smooth muscle cells. Journal of Physiology 531, 707713.
  • Somlyo, A. V., Gonzalez-Serratos, H. G., Shuman, H., McClellan, G. & Somlyo, A. P. (1981). Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. Journal of Cell Biology 90, 577594.
  • Steeghs, K., Benders, A., Oerlemans, F., De Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., Van Deursen, J., Perryman, D., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J. & Wieringa, B. (1997). Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89, 93103.
  • Stefanova, H. I., East, J. M. & Lee, A. G. (1991). Covalent and non-covalent inhibitors of the phosphate transporter of the sarcoplasmic reticulum. Biochimica et Biophysica Acta 1064, 321328.
  • Stephenson, D. G., Nguyen, L. T. & Stephenson, G. M. M. (1999). Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. Journal of Physiology 519, 177187.
  • Van Der Ent, M., Jeneson, J. A., Remme, W. J., Berger, R., Ciampricotti, R. & Visser, F. (1998). A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure. European Heart Journal 19, 124131.
  • Vøllestad, N. K., Sejersted, R. B., Woods, J. J. & Bigland-Ritchie, B. (1988). Motor drive and metabolic responses during repeated sub-maximal contractions in humans. Journal of Applied Physiology 64, 14211427.
  • Westerblad, H. & Allen, D. G. (1991). Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. Journal of General Physiology 98, 615635.
  • Westerblad, H. & Allen, D. G. (1992). Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. Journal of Physiology 453, 413434.
  • Westerblad, H. & Allen, D. G. (1994). The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone. Journal of Physiology 474, 291301.
  • Westerblad, H. & Allen, D. G. (1996). The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pflügers Archiv 431, 964970.
  • Westerblad, H., Allen, D. G. & Lännergren, J. (2001). Muscle fatigue: lactic acid or inorganic phosphate the major cause. News in Physiological Sciences, (in the Press).
  • Westerblad, H., Lee, J. A., Lännergren, J. & Allen, D. G. (1991). Cellular mechanisms of fatigue in skeletal muscle. American Journal of Physiology 261, C195209.
  • Williams, J. H. & Klug, G. A. (1995). Calcium exchange hypothesis of skeletal muscle fatigue: a brief review. Muscle and Nerve 18, 421434.
  • Wilson, J. R. (1996). Evaluation of skeletal muscle fatigue in patients with heart failure. Journal of Molecular and Cellular Cardiology 28, 22872292.
  • Wilson, J. R., Fink, L., Maris, J., Ferraro, N., Power-Vanwart, J., Eleff, S. & Chance, B. (1985). Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation 71, 5762.