Morphological aspects of squid (Loligo, Lolliguncula) mantle relevant to locomotory function were studied. Methods used included polarized light microscopy of frozen sections of untreated tissue taken from animals immediately after death and electron microscopy.

The mantle consists of circular and radial muscles arranged in alternating rings along the whole length of the mantle. The muscle is obliquely striated. Connective tissue fibres are found in the body of the muscle and in the outer and inner tunics. The outer tunic consists of layers of large collagenous fibres. The fibres run in superimposed right- and left-handed helical courses that lie at an angle of 27° to the long axis of the animal. The tunics and the intramuscular connective fibres are thought to resist length changes in the mantle while permitting the changes in girth required for the jet power stroke. Both the intramuscular and the tunic fibre systems may provide elastic energy for the return phase of the jet cycle. Tunic fibres appear to be a geodesic tensile reinforcing system ensuring smooth shape changes in the mantle.