Allometry and curvature in the long bones of quadrupedal mammals



The allometric relationships between basic structural proportions in long bones are examined in the humerus, radius, femur and tibia for a diverse group of 42 terrestrial quadrupedal mammals that span a size range from 0.02–6000 kg. Non-linear scaling is found for length vs. diameter in the tibia and radius, suggesting that the mechanical constraints on the skeleton differ within large and small body-size mammals. Curvature normalized to mid-shaft radius scales differently in the different long bones. Curvature is poorly related to size in the proximal limb bones (humerus and femur) while it decreases systematically with size in the tibia (mass exponent −0.13). The scaling of normalized curvature in the radius is unique among long bones. Variability of curvature in the radius is reduced at any size in comparison to that found in the other long bones. Normalized curvature is constant within the small body size group (0.02 to approximately 100 kg) while it decreases sharply with size within animals over 100 kg body mass. The unusual scaling found in the radius is probably the result of this bone's close alignment with the extrinsic forces which act on it during locomotion. The change in scaling within the radius for animals of different size may be indicative of more general size-dependent mechanical trade-offs which are masked by the complex loading circumstances of the other long bones.