Relative movements of the main wing areas around the major flexion lines are compared during wing folding at rest, and during the supinatory phase of the flight cycle, which involves considerable wing deformation. Folding of the wing apex at rest is achieved by a combination of movements around the median flexion line (the main longitudinal flexion line), the principal transverse fold, and a variety of smaller, oblique ‘tucking’ folds. During flight, wing tip deformation is strongly influenced by elastic forces involved in the normal wing folding and unfolding processes. Those beetles possessing an inwardly sprung wing apex display partial folding at supination, associated with the temporary relaxation of the forces opposing spring recoil. These beetles also show enhanced mobility about the median flexion line which facilitates leading edge supination. The presence of the principal transverse fold may help to concentrate ventral flexure towards the wing tip. The wings of beetles possessing an outwardly-sprung apex are much less affected by the presence of the flexion lines associated with folding. In these cases, enhanced supination of the leading edge, in the face of an overall increase in wing membrane stiffness, may be related to the presence of the highly-sclerotized pterostigma.