Get access
Advertisement

Testicular and ovarian development in the harbour porpoise (Phocoena phocoena)

Authors


*All correspondence to: W. V. Holt, Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, U.K.

Abstract

Testicular and ovarian development in neonatal and juvenile harbour porpoises Phocoena phocoena was examined, using tissue from animals (males n= 65 and females n= 10) stranded or caught off the coast of England and Wales. Classification of the animals according to their stage of sexual development was undertaken using characteristics of gonadal morphology. Developmental correlates of the immature testis were increased incidence of prespermatogonia in seminiferous tubules, and the increasing proportion of testicular volume occupied by the seminiferous tubules. Using a low magnification (×200) assessment of testis sections, immature specimens could be grouped into three developmentally distinct classes, based on the relative amounts of interstitial and seminiferous tubule tissue and the frequency of prespermatogonia. Adult testes, showing either active spermatogenesis or seasonal quiescence, could be clearly distinguished from immature testes using histological criteria such as the presence of spermatocytes and spermatids. This classification system was used to determine relationships between testicular development and body size: males were classified as immature when they had body lengths < 135 cm and body weights < 30 kg; mature males always exceeded 140 cm in length and 40 kg in weight; and a transitional group, which was regarded as juvenile, had body lengths between 110 and 140 cm and body weights between 20 and 40 kg. Ovarian morphology was used to distinguish neonatal and juvenile females. Neonates displayed characteristic cords of naked ova which dispersed as development progressed. Neonatal animals had body lengths < 100 cm and body weights < 18 kg; within this group (n= 5) there were significant (P < 0.01) left-right asymmetries in the number of naked ova present, the left ovary containing nearly twice as many ova as the right. Although this difference was not apparent in females with body lengths > 100 cm and body weights between 19 and 30 kg (juveniles) it could be related to the almost total asymmetry of ovulation from the left ovary in this species (Harrison, Brownwell & Boice, 1972).

Get access to the full text of this article

Ancillary