SEARCH

SEARCH BY CITATION

Keywords:

  • mule deer;
  • Odocoileus hemionus;
  • density dependence;
  • ideal-free distribution;
  • dietary niche dynamics

Abstract

Effects of population density of mule deer Odocoileus hemionus on forage selection were investigated by comparing diet characteristics of two subpopulations of deer in southern California, USA, that differed in population density during winter. Quality of diet for deer, as indexed by faecal crude protein, was higher at the low-density site than at the high-density site in winter, when deer densities were different. Quality of diet was similar in summer when both areas had comparable densities of deer. Both outcomes are consistent with predictions from density-dependent selection of diets by deer. Dietary niche breadth, however, differed in a manner opposite to predictions of niche theory based on diet selection under an ideal-free distribution. During winter, when differences in density between the two study sites were pronounced, niche breadth along the dietary axis in the low-density area was twice that of the high-density site. Generalist herbivores feeding primarily on low-quality browse at high population density in winter would be expected to increase their dietary breadth by feeding on additional species of plants as they depleted their food supply. Mule deer in our study, however, decreased the breadth of their dietary niche as population density increased. We hypothesize that by rapidly eliminating high-quality forages from an area by heavy grazing, deer at higher population densities narrowed their dietary niche. Theoretical models for changes in niche dimensions, including the ideal-free distribution, need to consider such empirical outcomes.