SEARCH

SEARCH BY CITATION

References

  • Balciauskas, L. (1999). European bison (Bison bonasus) in Lithuania: status and possibilities of range extension. Acta Zool. Lituan. 9, 318.
  • Bargo, M.S., De Iuliis, G. & Vizcaíno, S.F. (2006). Hypsodonty in Pleistocene ground sloths. Acta Palaeont. Polon. 51, 5361.
  • Boisserie, J.R., Zazzo, A., Merceron, G., Blondel, C., Vignaud, P., Likius, A., Taïsso-Mackaye, H. & Brunet, M. (2005). Diets of modern and late Miocene hippopotamids: evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 221, 153174.
  • Borowski, S. & Kossak, S. (1972). The natural food preferences of the European bison in seasons free of snow cover. Acta Theriol. 17, 151169.
  • Bremond, L., Alexandre, A., Peyron, O. & Guiot, J. (2005). Grass water stress estimated from phytoliths in West Africa. J. Biogeogr. 32, 311327.
  • Brizuela, M.A., Detling, J.K. & Cid, M.S. (1986). Silicon concentration of grasses growing in sites with different grazing histories. Ecology 67, 10981101.
  • Cios, K., Pedrycz, W. & Świniarski, R.W. (1998). Data mining methods in knowledge discovery. Boston: Kluwer Publishers.
  • Feranec, R.S. (2002). Key adaptations creating ecological generalization through morphological specialization: evidence from hypsodonty and stable isotopes. J. Vertebr. Paleont. 22 (Suppl.), 52A.
  • Feranec, R.S. (2003). Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29, 230242.
  • Flores-Miyamoto, K., Clauss, M., Ortmann, S. & Sainsbury, A.W. (2005). Nutrition of captive lowland anoa (Bubalus depressicornis): a study on ingesta passage, intake, digestibility, and a diet survey. Zool. Biol. 24, 125134.
  • Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool. Fenn. 180, 176.
  • Fortelius, M., Eronen, J., Liu, L.P., Pushkina, D., Tesakov, A., Vislobokova, I. & Zhang, Z.Q. (2003). Continental-scale hypsodonty patterns, climatic paleobiogeography and dispersal of Eurasian Neogene large mammal herbivores. In Distribution & migration of tertiary mammals in Eurasia. Reumer, J.W.F. & Wessels, W. (Eds). Deinsea10: 1–11.
  • Gebczynska, Z., Gebczynski, M. & Martynowicz, E. (1991). Food eaten by free-living European bison. Acta Theriol. 36, 307313.
  • Gordon, I.J. & Illius, A.W. (1988). Incisor arcade structure and diet selection in ruminants. Func. Ecol. 2, 522.
  • Harris, J.M. & Cerling, T.E. (2002). Dietary adaptations of extant and Neogene African suids. J. Zool. (Lond.) 256, 4554.
  • Harvey, P.H. & Pagel, M.D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.
  • Hopkins, S.S.B. (2003). Parallel adaptive radiations in four lineages of Aplodontoid rodents: a case study in the evolution of hypsodonty. Geol. Soc. Am. Abstr. Prog. 34, 418.
  • Jackson, J.E. (1987). Oxtoceras bexoarticus. Mammal. Species 295, 15.
  • Janis, C.M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals. In Teeth revisited: 371391. Russell, D.E., Santoro, J.P. & Sigogneau-Russel, D. (Eds). Proceedings of the 7th International Congress of Dental Morphology. Mem. Mus. Hist. Nat. 53: 367–387.
  • Janis, C.M. (1995). Correlations between craniodental morphology and feeding behaviour in ungulates: reciprocal illumination between living & fossil taxa. In Functional morphology in vertebrate paleontology: 7698. Thomason, J.J (Ed.). Cambridge: Cambridge University Press.
  • Janis, C.M., Damuth, J. & Theodor, J.M. (2000). Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proc. Nat. Acad. Sci. USA 14, 78997904.
  • Janis, C.M., Damuth, J. & Theodor, J.M. (2002). The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 183198.
  • Janis, C.M. & Ehrhardt, D. (1988). Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zool. J. Linn. Soc. 92, 267284.
  • Janis, C.M. & Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with especial reference to limiting factors. Biol. Rev. 63, 197230.
  • Jernvall, J. & Fortelius, M. (2002). Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417, 538540.
  • Larose, D.T. (2004). Discovering knowledge in data: an introduction to data mining. New York: John Wiley & Sons Inc.
  • Lucas, P.W., Turner, I.M., Dominy, N.J. & Yamashita, N. (2000). Mechanical defences to herbivory. Ann. Bot. 86, 913920.
  • MacFadden, B.J. (2000). Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets & terrestrial communities. Annu. Rev. Ecol. Syst. 31, 3359.
  • MacFadden, B.J. & Shockey, B.J. (1997). Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77100.
  • Mendoza, M. (2007). Decision trees: a machine learning methodology for characterizing morphological patterns resulting from ecological adaptations. In Automated Taxon Identification in Systematics: Theory, Approaches and Applications: 261276. MacLeod, N. (Ed.) London: Taylor & Francis.
  • Mendoza, M., Janis, C.M. & Palmqvist, P. (2002). Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J. Zool. (Lond.) 258, 223246.
  • Mendoza, M., Janis, C.M. & Palmqvist, P. (2005). Patterns in the trophic-size structure of mammal communities: a taxon-free characterization. Evol. Ecol. Res. 7, 505530.
  • Mendoza, M., Janis, C.M. & Palmqvist, P. (2006). Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J. Zool. (Lond.) 270, 90101.
  • Mendoza, M. & Palmqvist, P. (2006a). Characterizing adaptive morphological patterns related to habitat use and body mass in Bovidae (Mammalia, Artiodactyla). Acta Zool. Sin. 52, 971987.
  • Mendoza, M. & Palmqvist, P. (2006b). Characterizing adaptive morphological patterns related to diet in Bovidae (Mammalia, Artiodactyla). Acta Zool. Sin. 52, 9881008.
  • Michie, D., Spiegelhalter, D.J. & Taylor, C.C. (Eds). (1994). Machine learning, neural & statistical classification. New York: Ellis Horwood.
  • Mills, G. & Hes, L. (1997). The complete book of Southern African mammals. Cape town, South Africa: Struik Publishing Group.
  • Nowak, R. (2001). Walker's mammals of the world. 6th edn. Baltimore: Johns Hopkins University Press.
  • Palmqvist, P., Gröcke, D.R., Arribas, A. & Fariña, R.A. (2003). Paleoecological reconstruction of a lower Pleistocene large mammals community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology 29, 205229.
  • Pérez-Barberia, F.J. & Gordon, I.J. (2001). Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proc. Roy. Soc. Lond. Ser. B – Biol. Sci. 268, 10211030.
  • Quinlan, J.R. (1985). Introduction to decision trees. Machine Learning 1, 81106.
  • Reed, K.E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24, 384408.
  • Shotwell, J.A. (1961). Late Tertiary biogeography of horses in the northern Great Basin. J. Paleontol. 35, 203217.
  • Simpson, G.G. (1951). Horses: the story of the horse family in the modern world and through sixty million years of history. Oxford: Oxford University Press.
  • Solounias, N. & Dawson-Saunders, B. (1988). Dietary adaptations and palaeoecology of the late Miocene ruminants from Pikermi and Samos in Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 65, 149172.
  • Solounias, N. & Moelleken, S.M.C. (1993). Dietary adaptation of some extinct ruminants determined by premaxilary shape. J. Mammal. 74, 10591071.
  • Spencer, L.M. (1997). Dietary adaptations of Plio-Pleistocene Bovidae: implications for hominid habitat use. J. Hum. Evol. 32, 201228.
  • Stirton, R.A. (1947). Observations on evolutionary rates in hypsodonty. Evolution 1, 3441.
  • Strömberg, C.A.E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 239275.
  • Strömberg, C.A.E. (2006). Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32, 236258.
  • Van Someren, M. & Urbancic, T. (2005). Applications of machine learning: matching problems to tasks and methods. Knowledge Eng. Rev. 20, 363402 (Published online by Cambridge University Press; 17 May 2006).
  • Van Valen, L. (1960). A functional index of hypsodonty. Evolution 14, 531532.
  • Whitten, A.J., Mustafa, M. & Henderson, G.S. (1987). The ecology of Sulawesi. Yogyakarta, Indonesia: Gadjah Mada University Press.
  • Williams, S.H. & Kay, R.F. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. J. Mammal. Evol. 8, 207229.