• age;
  • development;
  • growth rate;
  • life-history theory;
  • parental care;
  • Phoebastria immutabilis


Offspring growth and survival are predicted to be higher for older parents, due to a variety of mechanisms, such as increased breeding experience or greater investment favored by low residual reproductive value. Yet the extent to which parent age affects offspring viability is likely to vary between different aspects of growth and survival, perhaps being most pronounced at the most stressful stages of reproduction. We studied the link between parent age and nestling growth and survival in the Laysan albatross, a long-lived seabird with a mean first breeding age of 8 years. Offspring of older parents were more likely to survive to fledging. Among those that did fledge, nestlings of older parents grew more rapidly. However, parent age did not influence the eventual asymptotic size that nestlings reached before fledging: fast-growing nestlings of older parents reached 90% of asymptotic size roughly 1 week sooner, but slow-growing nestlings of younger parents eventually caught up in size before fledging. Older parents bred c. 2 days earlier than younger parents, but hatch date did not explain observed variation in offspring success. The extent to which parent age accounted for variation in size of individual nestlings was not constant but peaked near the midpoint of development. This could reflect a time period when demands on parents reveal age-based differences in parental quality. Overall, growth and survival of offspring increased with parent age in this species, even though the late age of first breeding potentially provides a 7-year period for birds to hone their foraging skills or for selection to eliminate low-quality individuals.