Get access

Feeding the vertebrate retina from the Cambrian to the Tertiary

Authors


  • Editor: Günther Zupanc

Correspondence
Ivan R. Schwab, Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, 4860 Y St, Suite 2400, Sacramento, CA 95817, USA.
Email: irschwab@ucdavis.edu

Abstract

The retina of the vertebrate eye is metabolically active and requires nutritive support. During the last 540 million years it has evolved into forms as complicated and nutritionally demanding as those found in avian or primate eyes. Diffusion from the choroid is generally able to supply the metabolic needs of thin retinae. However, when the thickness exceeds the limits of diffusion, structures are needed to supplement the vascular supply from the choroid. These supplemental nutritive devices include the choroidal gland, the falciform process and preretinal vascular plexus of fish, the conus papillaris of lizards, the pecten oculi of birds, the intraretinal vessels of mammals and a few novel systems that remain difficult to classify. These vascular systems are among the most variable features of the vertebrate eye. Here, we review classical and recent findings regarding such retinal nutrition systems, propose a three category classification for them based on histologic origins and speculate on the evolutionary forces which drove their development.

Ancillary