Get access

Allometric equations for predicting body mass of dinosaurs


  • Editor: Andrew Kitchener

G. C. Packard, 865 Three Corner Gate Road, Livermore, CO 80536, USA.


We use data from the literature to compare two statistical procedures for estimating mass (or size) of quadrupedal dinosaurs and other extraordinarily large animals in extinct lineages. Both methods entail extrapolation from allometric equations fitted to data for a reference group of contemporary animals having a body form similar to that of the dinosaurs. The first method is the familiar one of fitting a straight line to logarithmic transformations, followed by back-transformation of the resulting equation to a two-parameter power function in the arithmetic scale. The second procedure entails fitting a two-parameter power function directly to arithmetic data for the extant forms by nonlinear regression. In the example presented here, the summed circumferences for humerus plus femur for 33 species of quadrupedal mammals was the predictor variable in the reference sample and body mass was the response variable. The allometric equation obtained by back-transformation from logarithms was not a good fit to the largest species in the reference sample and presumably led to grossly inaccurate estimates for body mass of several large dinosaurs. In contrast, the allometric equation obtained by nonlinear regression described data in the reference sample quite well, and it presumably resulted in better estimates for body mass of the dinosaurs. The problem with the traditional analysis can be traced to change in the relationship between predictor and response variables attending transformation, thereby causing measurements for large animals not to be weighted appropriately in fitting models by least squares regression. Extrapolations from statistical models obtained by back-transformation from lines fitted to logarithms are unlikely to yield reliable predictions for body size in extinct animals. Numerous reports on the biology of dinosaurs, including recent studies of growth, may need to be reconsidered in light of our findings.