SEARCH

SEARCH BY CITATION

Keywords:

  • plantar pressure;
  • pedobarography;
  • mammals;
  • scaling;
  • foot use

Abstract

The interaction of the limbs with the substrate can teach a lot about an animal's gait mechanics. Unlike ground-reaction forces, plantar pressure distributions are rarely studied in animals, but they may provide more detailed information about the loading patterns and locomotor function of specific anatomical structures. With this study, we aim to describe pressures for a large and diverse sample of mammalian species, focusing on scaling effects. We collected dynamic plantar pressure distributions during voluntary walking in 28 mammal species. A dynamic classification of foot use was made, which distinguished between plantiportal, digitiportal and unguliportal animals. Analysis focused on scaling effects of peak pressures, peak forces and foot contact areas. Peak pressure for the complete mammal sample was found to scale to (mass)1/2, higher than predicted assuming geometric similarity, and we found no difference between the different types of foot use. Only the scaling of peak force is dependent on the dynamic foot use. We conclude that plantar peak pressure rises faster with mass than expected, regardless of the type of foot use, and scales higher than in limb bones. These results might explain some anatomical and behavioural adaptations in graviportal animals.