Advertisement

Burrow architecture and digging activity in the Cape dune mole rat

Authors


  • Editor: Virginia Hayssen

Correspondence
Michael Scantlebury, Medical Biology Centre, Quercus, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, Northern Ireland.
Email: m.scantlebury@qub.ac.uk

Abstract

While females are traditionally thought to invest more time and energy into parental care than males, males often invest more resources into searching and displaying for mates, obtaining mates and in male–male conflict. Solitary subterranean mammals perform these activities in a particularly challenging niche, necessitating energetically expensive burrowing to both search for mates and forage for food. This restriction presumably affects males more than females as the former are thought to dig longer tunnels that cover greater distances to search for females. We excavated burrow systems of male and female Cape dune mole rats Bathyergus suillus the, largest truly subterranean mammal, to investigate whether male burrows differ from those of females in ways that reflect mate searching by males. We consider burrow architecture (length, internal dimensions, fractal dimension of tunnel systems, number of nesting chambers and mole mounds on the surface) in relation to mating strategy. Males excavated significantly longer burrow systems with higher fractal dimensions and larger burrow areas than females. Male burrow systems were also significantly farther from one another than females were from other females' burrow systems. However, no sex differences were evident in tunnel cross-sectional area, mass of soil excavated per mound, number of mounds produced per unit burrow length or mass of soil excavated per burrow system. Hence, while males may use their habitat differently from females, they do not appear to differ in the dimensions of the tunnels they create. Thus, exploration and use of the habitat differs between the sexes, which may be a consequence of sex differences in mating behaviour and greater demands for food.

Ancillary