SEARCH

SEARCH BY CITATION

References

  • Amrhein, N. (1974). Cyclic nucleotide phosphodiesterases in plants. Zeitschrift für Pflanzenphysiologie, 72, 249261.
  • Amrhein, N. (1977). The current status of cyclic AMP in higher plants. Annual Review of Plant Physiology, 28, 123132.
  • Appleman, M. M., Thompson, W. L. & Russell, T. R. (1973). Cyclic nucleotide phosphodiesterase. In: Advances in Cyclic Nucleotide Research 3 (Ed. by P.Greengard & G. A.Robinson), pp. 6598. New York , Raven Press.
  • Bhatla, S. C. & Chopra, R. N. (1979). Inhibition of sex induction in Bryum argenteum due to high concentration of sucrose and its reversal by cyclic 3′,5′-adenosine monophosphate. Zeitschrift fur Pflanzenphysiologie, 92, 375378.
  • Butcher, R. W. & Sutherland, E. W. (1962). Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′, 5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine. Journal of Biological Chemistry, 237, 12441250.
  • Chopra, R. N. & Rekhi, A. (1979). Studies on protonemal differentiation and bud formation in Timmiella anomala. Phytomorphology, 29, 179184.
  • Chopra, R. N. & Bhatla, S. C. (1981). Involvement of cyclic 3′, 5′-adenosine monophosphate and other purine derivatives in sex induction in the moss Bryum argenteum. Zeitschriftfiir Pflanzenphysiologie, 103, 393402.
  • Gilbert, M. & Galsky, A. C. (1972). The action of cyclic-AMP on GA3 controlled response. III. Characteristics of barley endosperm acid phosphatase induction by gibberellic acid and cyclic 3′, 5′-adenosine monophosphate. Plant and Cell Physiology, 13, 867873.
  • Handa, A. K. & Johri, M. M. (1976). Cell differentiation by 3′, 5′-cyclic AMP in a lower plant. Nature, London, 259, 480482.
  • Handa, A. K. & Johri, M. M. (1977). Cyclic adenosine 3′, 5′-monophosphate in moss protonema. Plant Physiology, Lancaster, 59, 490496.
  • Handa, A. K. & Johri, M. M. (1979). Involvement of cyclic adenosine 3′, 5′-monophosphate in chloronema differentiation in protonema cultures of Funaria hygrometrica. Planta, 144, 317324.
  • Kamisaka, S., Sakukai, N. & Masuda, Y. (1973). Auxin-induced growth of tuber tissue of Jerusalem artichoke. Viii. Role of cyclic AMP in the action of auxin, cytokinin and gibberellic acid. Plant and Cell Physiology, 14, 183198.
  • Kaul, R. & Sachar, R. C. (1982). On the presence of adenosine 3′, 5′-cyclic monophosphate in moss (Funaria hygrometrica). Biochemical and Biophysical Research Communication, 104, 126132.
  • Knop, M. (1865). Quantitative Untersuchungen Über den Ernahrungsprozess der Pflanzen. Landw. Versuchsstat, 7, 93107.
  • Lin, P. P. C. (1974). Cyclic nucleotides in higher plants? In: Advances in cyclic nucleotide research 4 (Ed. by P.Greengard & G. A.Robinson), pp. 439461. New York , Raven Press.
  • Nitsch, J. P. & Nitsch, C. (1956). Auxin dependent growth of excised Helianthus tuberosum tissues. American Journal of Botany, 43, 839851.
  • Sachar, R. C, Taneja, S. R. & Sachar, K. (1975). Cyclic AMP- Its biological role in higher plants. Journal of Scientific and Industrial Research, 34, 5464.
  • Schneider, J., Szweykowska, A. & Pychala, M. (1975). Evidence against mediation of adenosine 3′, 5′-cyclic monophosphate in bud-inducing effect of cytokinin in moss protonema. Ada Societatis Botanicorum Poloniae, 44, 610614.
  • Spiess, L. D. (1979). Antagonism of cytokinin induced callus in Pylaisiella selivynii by nucleosides and cyclic nucleotides. Bryologist, 82, 4753.