SEARCH

SEARCH BY CITATION

References

  • Anon (1977). Genstat. A General Statistical Program. Numerical Algorithms Group Ltd, Oxford .
  • Baker, R. (1971). Analyses involving inoculum density of soil-borne plant pathogens in epidemiology. Phytopathology, 61, 12801292.
  • Baker, R., Maurer, C. L. & Maurer, R. A. (1967). Ecology of plant pathogens in soil. VII. Mathematical models and inoculum density. Phytopathology, 57, 662666.
  • Benson, D. M. & Baker, R. (1974). Epidemiology of Rhizoctonia solani pre-emergence damping-off of radish: influence of pentachloronitrobenzene. Phytopathology, 64, 3840.
  • Blair, I. D. (1943). Behaviour of the fungus Rhizoctonia solani Kuhn in the soil. Annals of Applied Biology, 30, 118127.
  • Brown, M. E. & Hornby, D. (1971). Behaviour of Ophiobolus graminis on slides buried in soil in the presence or absence of wheat seedlings. Transactions of the British Mycological Society, 56, 95103.
  • Drury, R. E., Baker, R. & Griffin, G. J. (1983). Calculating the dimensions of the rhizosphere. Phytopathology, 73, 13511353.
  • Edwards, A. W. F. (1960). The meaning of binomial distribution. Nature, 186, 1074.
  • Ferriss, R. S. (1981). Calculating rhizosphere size. Phytopathology, 71, 12291231.
  • Ferriss, R. S. (1984). Effects of microwave oven treatment on microorganisms in soil. Phytopathology, 74, 121126.
  • Gilligan, C. A. (1979). Modeling rhizosphere infection. Phytopathology, 69, 782784.
  • Gilligan, C. A. (1980a). Dynamics of root colonization by the take-all fungus, Gaeumannomyces graminis. Soil Biology and Biochemistry, 12, 507512.
  • Gilligan, C. A. (1980b). Zone of potential infection between host roots and inoculum units of Gaeumannomyces graminis. Soil Biology and Biochemistry, 12, 513514.
  • Gilligan, C. A. (1985a). Probability models for host infection by soil-borne fungi. Phytopathology, 75, 6167.
  • Gilligan, C. A. (1985b). Construction of temporal models. III. Disease progress of soil-borne pathogens. In: Advances in Plant Pathology, vol. 3, Mathematical Modelling of Crop Disease (Ed. by C. A.Gilligan), pp. 67105. Academic Press, London .
  • Gilligan, C. A. (1987). Epidemiology of soil-borne plant pathogens. In: Populations of Plant Pathogens: Their Dynamics and Genetics (Ed. by M. S.Wolfe & C. E.Caten), pp. 119133. Blackwell, Oxford .
  • Griffin, G. J. (1969). Fusarium oxysporum and Aspergillus flavus spore germination in the rhizosphere of peanut. Phytopathology, 59, 12141218.
  • Grose, M. J., Parker, C. A. & Sivasithamparam, K. (1984). Growth of Gaeumannomyces graminis var. tritici in soil: effects of temperature and water potential. Soil Biology and Biochemistry, 16, 211216.
  • Henis, Y. & Ben-Yephet, Y. (1970). Effect of propagule size of Rhizoctonia solani on saprophytic growth, infectivity, and virulence on bean seedlings. Phytopathology, 60, 13511356.
  • Hewitt, E. J. (1966). Sand and water culture methods used in the study of plant nutrition, 2nd Edn. Technical Communication, 22, 431432.
  • Ko, W. & Hora, F. K. (1971). A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology, 61, 707710.
  • Macnish, G. C, Liddle, J. M. & Powelson, R. L. (1986). Studies on the use of high- and low-nutrient inoculum for infection of wheat by Gaeumannomyces graminis var tritici. Hytopathology, 76, 815819.
  • Mccullagh, P. & Nelder, J. A. (1983). Generalized Linear Models. Chapman & Hall, New York .
  • Nelder, J. A. & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, A, 135, 370384.
  • Papavizas, G. C, Adams, P. B., Lumsden, R. D., Lewis, J. A., Dow, R. L., Ayers, W. A. & Kantzes, J. G. (1975). Ecology and epidemiology of Rhizoctonia solani in field soil. Phytopathology, 65, 871877.
  • Powelson, R. L. (1985). Proceedings of the first international workshop on take-all of cereals. In: Ecology and Management of Soilborne Plant Pathogens (Ed. by C. A.Parker, A. D.Rovira, K. J.Moore, P. T. W.Wong & J. F.Kollmorgen). American Phyto pathological Society.
  • Punja, Z. K. & Grogan, R. G. (1981). Mycelial growth for infection without a food base by eruptively germinating sclerotia of Sclerotium rolfsii. Phytopathology, 71, 10991103.
  • Reynolds, K. M., Benson, D. M. & Bruck, R. I. (1985). Epidemiology of Phytophthora root rot of Fraser fir: estimates of rhizosphere width and inoculum efficiency. Phytopathology, 75, 10101014.
  • Rouse, D. I. (1985). Construction of temporal models. I. Disease progress of air-borne pathogens. In: Advances in Plant Pathology, vol. 3, Mathematical Modelling of Crop Disease (Ed. by C. A.Gilligan), pp. 1129. Academic Press, London .
  • Rouse, D. I. & Baker, R. (1978). Modeling and quantitative analyses of biological control mechanisms. Phytopathology, 68, 12971302.
  • Short, G. E. & Lacy, M. L. (1974). Germination of Fusarium solani f. sp. pisi chlamydospores in the spermosphere of Pea. Phytopathology, 64, 558562.
  • Stanghellini, M. E. & Hancock, J. G. (1971). Radial extent of the bean spermosphere and its relation to the behavior of Pythium ultimum. Phytopathology, 61, 165168.
  • Tomimatsu, G. S. & Griffin, G. J. (1982). Inoculum potential of Cylindrocladium crotalariae: infection rates and microsclerotial density-root infection relationships on peanut. Phytopathology, 72, 511517.
  • Wildermuth, G. B., Warcup, J. H. & Rovira, A. D. (1984). Growth of Gaeumannomyces graminis var. tritici in soil in the presence and absence of wheat roots. Transactions of the British Mycological Society, 82, 435441.
  • Wilkinson, H. T., Cook, R. J. & Alldredge, J. R. (1985a). Relation of inoculum size and concentration to infection of wheat roots. Phytopathology, 75, 98103.
  • Wilkinson, H. T., Alldredge, J. R. & Cook, R. J. (1985b). Estimated distances for infection of wheat roots by Gaeumannomyces graminis var. tritici in soils suppressive and conducive to take-all. Phytopathology, 75, 557559.