SEARCH

SEARCH BY CITATION

References

  • Apelbaum, A., Burgoon, A. C., Anderson, J. D., Solomos, T. & Lieberman, M. (1981). Some characteristics of the system converting 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Physiology 67, 8084.
  • Arcus, A. C. (1959). Proteolytec enzyme of Actinidia chinensis. Biochimica Biophysica Acta 33, 242244.
  • Baldwin, J., Adlington, R. M., Lajoie, G. A. & Rawlings, B. J. (1985). On the biosynthesis of ethylene. Determination of the stereochemical course using modified substrates. Journal of the chemical Society. Chemical Communicational 14961498.
  • Boller, T. (1986). Roles of proteolytic enzymes in interaction of plants with other organisms In: Plant Proteolytic Enzymes, vol. 1. (Ed. by M. J.Dalling), pp. 6796. CRC Press, Boca Raton.
  • Bousquet J. -F. & Thiman, K. V. (1984). Lipid peroxidation forms ethylene from 1-aminocyclopropane-1-carboxylic acid and may operate in leaf senescence. Proceedings of the National Academy of Sciences, USA 81, 17241727.
  • Cameron, A. C., Fento, C. A. L., Yu, Y., Adams, D. O. & Yang, S. F. (1979). Increased production of ethylene by polant tissucs treated with 1-aminocyclopropane-1-carbozylic acid. Horticultural Science 14, 178180.
  • Chedhomme, F. & Rona, J. P. (1986). Isolation and electrical characterization of tonoplast vesicles from the Kiwi Fruit Actinidia Chinensis). Physiologia Plantarum 67, 2936.
  • Diolez, P., Davy De Virville, J., Latche, A., Moreau, F., Pech, J. C. & Reid, M. (1986). Role of the mitochondria in the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in plant tissues. Plant Science 43, 1317.
  • Guy, M. & Kende, H. (1984a). Ethylene formation in Pisum sativum and Vicia faba protoplasts. Planta 160, 276280.
  • Guy, M. & Kende, H. (1984b). Conversion of 1-aminocy clopropane-1-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L. Plant 160, 281287.
  • Hoffman, N. E. & Yang, S. F. (1980). Changes of 1-aminocyclopropane-1-carboxylic acid content in ripening fruits in relation to their ethylene production rates. Journal of the American Society of Horticultural Science 105, 492495.
  • Hoffman, N. E., Yang, S. F., Ichihara, A. & Sakamura, S. (1982). Stereospecific conversion of 1-aminocyclopropanecarboxylec acid to ethylene by plant tissue. Plant Physiology 70, 195199.
  • John, P. (1983). The coupling of ethylene biosynthesis to a transmembrane, electrogenic proton fluz. FEBS Letters 152, 141143.
  • John, P. & Miller, A. J. (1986). Electrogenic proton translocation by the adenosine triphosphatase of intact vacuoles isolated from beet (Beta vulgaris L.). Journjal of Plant Physiology 122, 116.
  • John, P., Porter, A. J. R. & Miller, A. J. (1985). Activity of the ethylene-forming enzyme measured in vivo at different cell potentials. Journal of Plant Physiology 121, 397406.
  • Konze, J. R. & Kende, H. (1979). Ethylene formation form 1-aminocyclopropane-1-carbozylic acid in homogenates of etiolated pea seedlings. Planta 146, 293301.
  • Lynch, D. V., Sridhara, S. & Thompson, J. E. (1985). Lipxygenase-generated hyroperoxides account for the non-physiological features of ethylene formation form 1-aminocyclopropane-1-carboxylic acid by microsomal membranes of carnations. Planta 164, 212125.
  • McKcon, T. A. & Yang, S. F. (1984). A Comparison of the comparison of the conversion of 1-amino-2ethylcyclopropane-1-carboxylic acid stereoisomers to 1-butene by pea epicotyls and by a cell-free system. Planta 160, 8487.
  • Matsumoto, S., Obara, T. Luh, B. S. (1983). Changes in chemical constituents of kiwifruit during post-harvest ripening. Journal of food Science 48, 607611.
  • Mattoo, A. K. & Lieberman, M. (1977). Localization of the ethylene-synthesizing system in apple tissue. Plant Physology 60, 794799.
  • Mayak, S., Legge, R. L. & Thompson, J. L. (1981). Ethylene formation form 1-aminocyclopropane-1-carboxylic acid by microsomal membranes form senescing carnation flowers. Planta 153, 4955.
  • Mayne, R G. Kende, H. (1986). Ethylene biosynthesis in isolated vacuoles of Vicia faba L. requirement for membrane integrity. Planta 167, 159165.
  • Parrish, D. J. & Leopole, A. C. (1978). Confounding of alternate respiration by lipoxygenase activity. Plant Physiology 62, 470472.
  • Pirrung, M. C. (1986). Mechanism of a lipoxygenase model for ethylene biosynthesis. Biochemistry 25, 114–118.
  • Porter, A. J. R., Borladoglu, J. T. & John, P. (1986). Activity of the ethylene-forming enzyme in relation to plant cell structure and organization Journal Plant Physiology 125, 207216.
  • Satoh, S. & Esashi, Y. (1980). Aminiosoburyric acid: a probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Cell Physiology 21, 939949.
  • Schonbaum, G. R., Bonner, W. D., Storey, B. T. & Bahr, J. T. (1971). Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiology 47, 124128.
  • Shimokawa, K. (1983). An ethylene-forming enzyme in Citrus unshiu fruits. Phytochemistry 22, 19031908.
  • Sitrit, Y., Riouv, J. & Blumenfeld, A. (1986). Regulation of ethylene biosynthesis in acocado fruit during ripening. Plant Physilology 81, 130135.
  • Stegink, S. J. & Siedow, J. N. (1986). Ethylene production from 1-aminocyclopropane-1-carboxylic acid in vitro: A mechanism for explaining ethylene production by a cell-free preparation from pea epicotyls. Physiologia Plantarum 66, 625631.
  • Venis, M. A. (1984). Cell-free ethylene-forming systems lack stereochemical fidelity. Planta 162, 8588.
  • Wang, T. T. & Yang, S. F. (1987). The physiological role of lipoxygenase in ethylene formation from 1-aminocyclopropane 1-carboxylic acid in oat leaves. Planta 170, 190196.
  • Yang, S. F. & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35, 155189.
  • Yu, Y. B., Adams, D. O. & Yang, S. F. (1980). Inhibition of ethylene production by 2.4-dinitrophenol and high temperature. Plant Physiology 66, 286290.
  • Yu, Y. -B. & Yang, S. F. (1979). Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiology 64, 10741077.