Mechanisms of action of abscisic acid at the cellular level



Abscisic acid (ABA) has been implicated in the control of a diverse range of physiological processes in higher plants. In this review, we focus on the events which constitute the cellular responses to ABA. Current evidence suggests that it is possible to classify the responses to ABA on the basis of whether they are rapid, involving ion fluxes (typified by the stomatal response), or slower and requiring alterations to gene expression (for example the response of cereal embryos to ABA). In our consideration of ABA stimulus response coupling pathways, we have chosen to highlight the role of the calcium ion in the rapid responses, while we have concentrated on the contribution of as-acting elements and trans-acting factors in the regulation of ABA-responsive genes. We also draw attention to the possibility that interaction may exist between these pathways.

Additionally, we discuss the controls of ABA concentrations during development and in response to environmental stimuli. Factors which contribute to the controls of ABA sensitivity are also reviewed. In our conclusions, we suggest that a general role for ABA may be to prepare tissue for entry into a new and different physiological state, perhaps by resetting the direction of cellular metabolism.