• Agave;
  • cactus;
  • canopy architecture;
  • Crassulacean acid metabolism;
  • environmental productivity index;
  • net CO2 uptake;
  • Opuntia ficus-indica;
  • photosynthesis;
  • plant productivity


  1. Top of page
  2. references

CAM species, which taxonomically are at least five times more numerous than C4 species, often grow-slowly, as is the case for various short-statured cacti and many epiphytes in several families, However, slow growth is not a necessary corollary of the CAM photosynthetic pathway, as can be appreciated by considering the energetics of CO2 fixation. For every CO2 fixed photosynthetically, C3 plants require 3 ATP and 2 NADPH, whereas the extra enzymatic reactions and compartmentation complexity for C4 plants require 4 or 5 ATP and 2 NADPH, and CAM plants require 5.5–6.5 ATP and 2 NADPH. Photorespiration in C8 plants can release some of the CO2, fixed and also has an energetic-cost, whereas photorespiration is much less in C4 and CAM plants. Therefore, CAM plants can perform net CO2 fixation 15% more efficiently than C3, plants, although 10% less efficiently than C4 plants.

Using a simple model that assumes 8 photons per CO2 fixed and a processing time per excitation of 5 ms, a maximum instantaneous rate for net CO2, uptake of 55 μmol m−2 s−1 is predicted. Measured maximal rates average 48μmol m−2 s−1 for leaves of six C3 species with the highest rates and 64 μmol m−2 s−1 for six such C4 species; CAM plants take up CO2 mainly at night, which is not directly related to the instantaneous rate of photon absorption. Net CO2 uptake integrated over 24 h, which is more pertinent to productivity than are instantaneous CO2 uptake rates, is similar for the three pathways, although the higher water-use efficiency of CAM plants can be an advantage during drought.

Canopy architecture is crucial for the distribution of the photosynthetic photon flux density (PPFD) over the shoot, which determines net CO2 uptake per unit ground area and hence determines productivity. Maximal productivity for idealized canopies under optimal conditions is predicted to be about 100 Mg d. wt ha−1 yr−1 (1 Mg = 1 tonne), whereas actual values of environmental factors in the field approximately halve this prediction. The influence of environmental factors on net CO2 uptake can be quantified using an environmental productivity index (EPI), which predicts the fractional limitation on net CO2 uptake and is the product of a water index, a temperature index, and a PPFD index (nutrient effects can also be included).

Using EPI with a ray-tracing technique to determine the PPFD index and taking into account respiration and carbon incorporated structurally, maximal productivity of CAM plants is predicted to occur at leaf or stem area indices of 4–5. In experiments designed using such shoot area indices, annual above-ground dry-weight productivities averaging 43 Mg ha−1 yr−1 have recently been observed for certain agaves and plutyopuntias. In comparison, the measured average annual productivity of the most productive plants is 49 Mg ha−1 yr−1 for six agronomic C4 species, 35 Mg ha−1 yr−1 for sis agronomic C3 species, and 39 Mg ha−1 yr−1 for six C3 tree species. Thus, CAM plants are capable of similar high productivities, which can become especially advantageous in regions of substantial water stress. Recognition of the high potential productivity of certain CAM species under optimal environmental conditions, exceeding that of most C3 species, may increase the cultivation of such CAM plants in various areas in the future.


Crassulacean acid metabolism


environmental productivity index


leaf area index




photosynthetic photon flux density


stem area index


water-use efficiency


  1. Top of page
  2. references
  • Acevedo, E., Badilla, I. & Nobel, P. S. (1983). Water relations, diurnal acidity changes, and productivity of a cultivated cactus, Opvntia ficus-indica. Plant Physiology 72, 775780.
  • Bartholomew, D. P. & Kadzimin, S. B. (1977). Pineapple. In: Ecophysiology of Tropical Crops (Ed. by P. T.deAlvim & T. T.Kozlowski), pp. 113156. Academic Press, New York .
  • Beadle, C. L., Long, S. P., Imbamba, S. K., Hall, D. O. & Olembo, R. J. (1985). Photosynthesis in Relation to Plant Production in Terrestrial Environments. Tycooly, Oxford .
  • Benson, L. (1982). The Cacti of United States and Canada. Stanford University Press, Stanford .
  • Black, C. C. (1973). Photosynthetic carbon fixation in relation to net CO., uptake. Annual Review of Plant Physiology 24, 253286.
  • Bugbee, B. G. & Salisbury, F. B. (1988). Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments. Plant Physiology 88, 869878.
  • Castongiay, Y. & Duise, P. A. (1985). Climatic analysis of a phenological zonation: a multivariate approach. Agricultural and Forest Meteorology 35, 3145.
  • Chang, J.-H. (1968). Climate and Agriculture: An Ecological Survey. Aldine, Chicago .
  • Cockblrn, W. (1985). Tansley Review No. 1. Variation in photosynthetic acid metabolism in vascular plants: CAM and related phenomena. Nevi Phytologist 101, 324.
  • Cockburn, W., Ting, I. P. & Sternberg, L. O. (1979). Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiology 63, 10291032.
  • Cooper, J. P. (1975). Control of photosynthetic production in terrestrial systems. In: Photosynthesis and Productivity in Different Environments (Ed. by J. P.Cooper), pp. 593621. Cambridge University Press, Cambridge .
  • Cui, M., Vogelmann, T. C. & Smith, W. K. (1991). Chlorophyll and light gradients in sun and shade leaves of Spinacia OLeracea. Plant, Cell and Environment (in the press).
  • Cche, J. D. & Acock, B. (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38, 127145.
  • Dahl, B. E. (1963). Soil moisture as a predictive index to forage yields for the Sand hill Range Type. Journal of Range Management 16, 128132.
  • Duncan, D. A. & Woodmansee, R. G. (1975). Forecasting forage yield from precipitation in California's annual rangeland. Journal of Range Management 28, 327329.
  • Edwards, G. & Walker, D. (1983). C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis. University of California Press, Berkeley .
  • Ehleringer, J. & Bjorkman, O. (1977). Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2 and O2 concentration. Plant Physiology 59, 8690.
  • Ehleringer, J., Bjorkman, O. & Mooney, H. A. (1976). Leaf pubescence: effects on absortance and photosynthesis in a desert shrub. Science 192, 376377.
  • Ellenberg, H. (1981). Ursachen des Vorkommens und Fehiens von Sukkulenten in den Trochengebitten der Erde. Flora 171, 114169.
  • Evans, L. T., (ed.) (1975). Crop Physiology: Some Case Histories. Cambridge University Press, Cambridge .
  • Felceb, R. S. & Moser, M. B. (1985). People of the Desert and Sea. University of Arizona Press, Tucson .
  • Flores Valdez, C. A. & Aguirre Rivera, J. R. (1979). El Nopal como Forraje. Universidad Autonoma Chapingo, Chapingo , Mexico .
  • Fujimori, T. (1971). Primary productivity of a young Tsuga heterophylla stand and some speculations about biomass of forest communities on the Oregon coast. United States Department of Agriculture Forest Service Research Pamphlet PNW-123.
  • Garcia De Cortazar, V., Acevedo, E. & Nobel, P. S. (1985). Modeling of PAR interception and productivity by Opuntia ficus-indica. Agricultural and Forest Meteorology 34, 145162.
  • Garcia de Cortazar, V. & Nobel, P. S. (1991). Prediction and measurement of high annual productivity for Opuntia ficus-indica. Agricultural and Forest Meteorology (in the press).
  • Gakiia-Moya, E. & Nobel, P. S. (1990). Leaf unfolding rates and responses to cuticle damaging for pulque agaves in Mexico. Desert Plants 10, 5557.
  • Gentry, H. B. (1982). Agaves of Continental North America. The University of Arizona Press, Tucson .
  • Gibson, A. C. & Nobel, P. S. (1986). The Cactus Primer. Harvard University Press, Cambridge , Massachusetts .
  • Gifford, R. M. (1974). A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic mechanism. Australian Journal of Plant Physiology 1, 107117.
  • Gifford, R. M., Thorne, J.H., Hitz, W. D. & Giaquinta R. T. (1984). Crop productivity and photoassimilate partitioning. Science 225, 801808.
  • Glass, C. & Foster, R. (1974). Ariocarpus: living rock cactus. Cactus and Succulent Journal (U.S.) 46, 172174.
  • Gregory, R. P. F. (1989). Biochemistry of Photosynthesis, 3rd edn. John Wiley, Chichester .
  • Griffiths, D. (1915). Yields of Native Prickly Pear in Southern Texas. Bulletin 208, United States Department of Agriculture, Washington , D.C. .
  • Hackett, C. & Carolane, J. (1982). Edible Horticultural Crops, Part II. Academic Press, Sydney .
  • Holm, L. G., Puxknett, D. L., Pancho, J. V. & Herberger, J.P. (1977). The World's Worst Weeds: Distribution and Biology. University of Hawaii Press, Honolulu .
  • Hunt, E. R., Jr. & Xobel, P. S. (1987). A two-dimensional model for water uptake by desert succulents: implications of root distribution. Annals of Botany 59, 559569.
  • Jarvis, P. G. & Leverenz, J. W. (1983). Productivity of temperate, deciduous and evergreen forests. In: Encyclopedia of Plant Physiology, New Series, Volume 12D. Physiological Plant Ecology IV. Ecosystem Processes (Ed. by O. L.Lange, P. S.Nobel, C. B.Osmond & H.Ziegler), pp. 233280. Springer-Verlag, Berlin .
  • Jones, H. G. (1983). Plants and Microclimate. Cambridge University Press, Cambridge .
  • Jones, C A. (1985). Grasses and Cereals: Growth, Development and Stress Response. Wiley, New York .
  • Kira, T. (1975). Primary production of forests. In: Photosynthesis and Productivity in Different Environments (Ed. by J. P.Cooper), pp. 540. Cambridge University Press, Cambridge .
  • Kluge, M. & Ting, I. P. (1978). Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation. Ecological Studies Series, Volume 30. Springer-Verlag, Berlin .
  • Lambers, H. (1987). Does variation in photosynthetic rate explain variation in growth rate and yield. Netherlands Journal of Agricultural Science 35, 505520.
  • le Houerol, H. N. (1984). Rain use efficiency: a unifying concept in arid-land ecology. Journal of Arid Environments 7, 213247.
  • LE Houeror, H. N., Bixgham, R. L. & Skerbek, W. (1988). Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments 15, 118.
  • Lieth, H. & Whittaker, R. H. (1975). Primary Productivity in the Biosphere. Ecological Studies, Volume 14. Springer-Verlag, Berlin .
  • Long, S. P. & Woodward, F. I. (eds). (1988). Plants and Temperature. Symposium XXXXII of the Society for Experimental Biology. Company of Biologists, Cambridge .
  • Longstreth, D. J., Hartsock, T. L. & Nobel, P. S. (1980). Mesophyll cell properties for some C3 and C2 species with high photosynthetic rates. Physiologia Plantarum 48, 494498.
  • Loomis, R. S. (1983). Productivity of agricultural systems. In: Encyclopedia of Plant Physiology, New Series, Volume 12D. Physiological Plant Ecology IV. Ecosystem Processes. (Ed. by O. L.Lange, P. S.Nobel, C. B.Osmond & H.Ziegler), pp. 151172. Springer-Verlag, Berlin .
  • Loomis, R. S. & Gerakis, P. A. (1975). Productivity of agricultural ecosystems. In: Photosynthesis and Productivity in Different Environments (Ed. by J. P.Cooper), pp. 145172. Cambridge University Press, Cambridge .
  • Loomis, R. S. & Williams, W. A. (1963). Maximum crop productivity: an estimate. Crop Science 3, 6772.
  • Loomis, R. S., Williams, W. A. & Hall, A. E. (1971). Agricultural productivity. Annual Review of Plant Physiology 22, 431468.
  • Luttce, U. (1987). Tansley Review No. 10. Carbon dioxide and water demand: Crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytologist 106, 593629.
  • Lüttce, U. & Ball, E. (1980). 2 H+:l malate2- stoichiometry during Crassulacean acid metabolism is unaffected by lipophilic cations. Plant, Cell and Environment 3, 195200.
  • Madgwick, H. A. I. (1981). Above-ground dry-matter content of a young close-spaced Pinus radiata stand. New Zealand Journal of Forestry Science 11, 203209.
  • McBride, R. A. & Mackintosh, E. E. (1984). Soil survey interpretations from water retention data. II. Assessment of soil capability ratings and crop performance indices. Soil Science Society of America Journal 48, 13431350.
  • Miller, R. B. (1971). Forest productivity in the temperate-humid zone of the southern hemisphere. In: Productivity of Forest Ecosystems, Proceedings of the Brussels Symposium (Ed. by P.Duvigneaud), pp. 299305. UNESCO, Paris .
  • Miziorko, H. M. & Lokimer, G. H. (1983). Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annual Review of Biochemistry 52, 507535.
  • Monjauze, A. & Le Horérou, H. N. (1965). Le rôle des Opuntia dans l'economie agricole Nord Africaine. Bulletin Ecole National Superieure de Tunisi 8–9, 85164.
  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B 281, 277294.
  • Monteith, J. L. (1978). Reassessment of maximum growth rates for C3 and C, crops. Experimental Agriculture 14, 15.
  • Mooney, H. A., Ehlerincer, J. & Berry, J. A. (1976). High photosynthetic capacity of a winter annual in Death Valley. Science 194, 322324.
  • Nix, H. A. & Fitzpatrick, E. A. (1969). An index of crop water stress related to wheat and grain sorghum yields. Agricultural Meteorology 6, 321327.
  • Nobel, P. S. (1977). Water relations and photosynthesis of a barrel cactus, Ferocaclus acanthodes, in the Colorado Desert. Oecologia 27, 117133.
  • Nobel, P. S. (1980a). Water vapor conductance and CO2 uptake for leaves of a CJ desert grass, Hilaria rigida. Ecology 61, 252258.
  • Nobel, P. S. (1980b). Interception of photosynthetically active radiation by cacti of different morphology. Oecologia 45, 160166.
  • Nobel, P. S. (1981). Influence of freezing temperatures on a cactus, Coryphantha vivipara. Oecologia 48, 194198.
  • Nobel, P. S. (1984). Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia 64, 17.
  • Nobel, P. S. (1985). PAR, water and temperature limitations on the productivity of cultivated Agave fourcroydes (henequen). Journal of Applied Ecology 22, 157173.
  • Nobel, P. S. (1988). Environmental Biology of Agaves and Cacti. Cambridge University Press, New York .
  • Nobel, P. S. (1989). A nutrient index quantifying productivity of agaves and cacti. Journal of Applied Ecology 26, 635645.
  • Nobel, P. S. (1990). Environmental influences on CO2 uptake by agaves, CAM plants with high productivities. Economic Botany 44, 488502.
  • Nobel, P. S. (1991). Physicochemical and Environmental Plant Physiology. Academic Press, San Diego .
  • Nobel, P. S. & Garcia De Cohtazar, V. (1987). Interception of photo synthetically active radiation and predicted productivity for Agave rosettes. Photo synthetic 21, 261272.
  • Nobel, P. S., Geller, G. N., Kee, S. C. & Zimmermank, A. D. (1986). Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface. Plant, Cell and Environment 9, 279287.
  • Nobel, P. S. & Hahtsock, T. L. (1983). Relationships between photo synthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a Crassulacean acid metabolism plant, Opuntia ficusivdica. Plant Physiology 71, 7175.
  • Nobel, P. S. & Hahtsock, T. L. (1984). Physiological responses of Opuntia ficusindica to growth temperature. Physiologia Plantarum 60, 98105.
  • Nobel, P. S. & Hartsock, T. L. (1986). Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations. Oecologia 68, 181185.
  • Nobel, P. S. & Valenzuela, A. C. (1987). Environmental responses and productivity of the CAM plant, Agave tequilana. Agricultural and Forest Meteorology 39, 319334.
  • Osmond, C. H., BJörkman, O. & Anderson, D. T. (1980). Physiological Processes in Plant Ecology. Toward A Synthesis with A triplex. Springer-Verlag, Berlin .
  • Osmond, C. B., Nott, D. L. & Firth, P. M. (1979). Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia. Oecologia 40, 331350.
  • Osmond, C. B., Winter, K. & Ziegler, H. (1982). Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of Plant Physiology, New Series, Volume 12B. Physiological Plant Ecology II. Water Relations and Carbon Assimilation (Ed. by O. L.Lange, P. S.Nobel, C. B.Osmond & H.Ziegler), pp. 479547. Springer-Verlag, Berlin .
  • Pearcy, R. W. & Ehlertnger, J. (1984). Comparative eco physiology of C3 and C4 plants. Plant, Cell and Environment 7, 113.
  • Radmer, R. & Kok, B. (1977). Photosynthesis: limited yields, unlimited dreams. Bio Science 27, 599605.
  • Russell, C. E, & Felker, P. (1987). The prickly-pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Economic Botany 41, 433445.
  • Russell, G., Marshall, B. & Jarvis, P. G., (eds) (1989). Plant Canopies, Their Growth, Form and Function. Cambridge University Press, Cambridge .
  • Salisbury, F. B. & Ross, C. W. (1991). Plant Physiology, 4th edn. Wadsworth, Belmont , California .
  • Sasek, T. W. & Strain, B. R. (1990). Implications of atmospheric enrichment and climatic change for geographical distribution of two introduced vines in the U.S.A. Climate Change 16, 3151.
  • Schönal, A. P. G. & Pennefather, M. (1975). A first account of profits at harvesting as a result of fertilizing Eucalyptus grandis at time of planting in southern Africa. South Africa Forestry Journal 94, 2935.
  • Simpson, B. B. & Connor-Ocorzaly, M. (1986). Economic Botany: Plants in Our World. McGraw-Hill, New York .
  • Smith, J. A. C. (1984). Water relations in CAM plants. In: Eco-Fisiologia de Plantas CAM (Ed. by E.Medina), pp. 3051. Centro de Ecologia, Caracas .
  • Smith, J. A. C, Griffiths, H., Lcttge, U., Crook, C. E., Griffiths, N. M. & Stimmel, K.-H. (1986). Comparative eco physiology of CAM and C3 bromeliads. IV. Plant water relations. Plant, Cell and Environment 9, 395410.
  • Sneva, F. A. & Hyder, D. M. (1962). Estimating herbage production on semi-arid ranges in the International Region. Journal of Range Management 15, 8893.
  • Spalding, M. H., Stumpf, D. K., Kr, M. S. B., Birrjs, R. H. & Edwards, G. E. (1979). Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum D.C. Australian Journal of Plant Physiology 6, 557567.
  • Szarek, S. R. & Ting, I. P. (1975). Photosynthetic efficiency of CAM plants in relation to C3 and C4 plants. In: Environmental and Biological Control of Photosynthesis (Ed. by R.Marcelle), pp. 289297. W. Junk, The Hague .
  • Taiz, L. & Zeiger, E. (1991). Plant Physiology. Benjamin/Cummings, Redwood City , California .
  • Tello-Balderas, J.J. & García-Moya, E. (1985). The mezcal industry in the Altiplano Potosino-Zacatecano of north-central Mexico. Desert Plants 7, 8187.
  • Thorne, R. F. (1983). Proposed new realignments in the angiosperms. Nordic Journal of Botany 3, 85117.
  • Ting, I. P. (1985). Crassulacean acid metabolism. Annual Review of Plant Physiology 36, 595622.
  • Valenzlela, A. G. (1985). The tequila industry in Jalisco, Mexico. Desert Plants 7, 6570.
  • Wahdlaw, I. F. (1990). Tansley Review No. 27. The control of carbon partitioning in plants. New Physiologist 116, 341381.
  • Williams, K., Percival, F., Merino, J. & Mooney, H. A. (1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell and Environment 10, 725734.
  • Winter, K. (1985). Crassulacean acid metabolism. In: Photosynthetic Mechanisms and the Environment (Ed. by J.Barber & N. R.Baker), pp. 329387. Elsevier, Amsterdam .
  • Winter, K., Wallace, B. J., Stocker, G. C. & Roksandic, Z. (1983). Crassulcean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57, 129141.
  • Zelitch, I. (1971). Photosynthesis, Photorespiration, and Plant Productivity. Academic Press, New York .