SEARCH

SEARCH BY CITATION

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill Jr AH, Riley RT. 1994. Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology 106: 10851093.
  • Abbas HK, Duke SO, Merrill Jr AH, Wang E, Shier WT. 1998. Phytotoxicity of australifungin, AAL-toxins and fumonisin B1 to Lemna pausicostata. Phytochemistry 47: 15091514.
  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgrey P, Sheen J, Ausubel FM. 2000. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene- and salicylate-dependent signaling pathways. Plant Cell 12: 18231836.
  • Bajjalieh S, Batchelor R. 2000. Ceramide kinase. Methods in Enzymology 311: 207215.
  • Barz WP, Walter P. 1999. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidyinositol-anchored proteins. Molecular Biology of the Cell 10: 10431059.
  • Beaudoin F, Gable K, Sayanova O, Dunn TM, Napier JA. 2002. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. Journal of Biological Chemistry 277: 1148111488.
  • Becker GW, Lester RL. 1980. Synthesis of inositol sphingolipids in Saccharomyces cerevisiae. Journal of Bacteriology 142: 747754.
  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T. 1998. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. Journal of Biological Chemistry 273: 3068830694.
  • Berglund A, Quartacci M, Calucci L, Navari-Izzo F, Pinzino C, Liljenberg C. 2002. Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles. Biochimica et Biophysica Acta 1546: 466473.
  • Betz C, Zajonc D, Moll M, Schweizer E. 2002. ISC1-encoded inositol phosphosphingolipid phospholipase C is involved in Na+/Li+ halotolerance in Saccharomyces cerevisiae. European Journal of Biochemistry 269: 40334039.
  • Bille J, Weiser T, Bentrup FW. 1992. The lysolipid sphingosine modulates pyrophosphatase activity in tonoplast vesicles and isolated vacuoles from a heterotrophic cell suspension culture of Chenopodium rubrum. Physiologia Plantarum 84: 250256.
  • Birch PRJ, Avrova AO, Duncan JM, Lyon GD, Toth RL. 1999. Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Molecular Plant–Microbe Interactions 12: 356361.
  • Boggs J. 1987. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochimica et Biophysica Acta 906: 353404.
  • Bohn M, Heinz E, Luthje S. 2001. Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots. Archives of Biochemistry and Biophysics 387: 3540.
  • Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P. 2002. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiology 129: 486499.
  • Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ, Hille J, Nijkamp HJ. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f.sp. lycopersici toxins and fumonisin B1. Proceedings of the National Academy of Sciences, USA 97: 49614966.
  • Brandwagt BF, Kneppers TJ, Nijkamp HJ, Hillie J. 2002. Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f.sp. lycopersici in Nicotiana umbratica plants. Molecular Plant–Microbe Interactions 15: 3542.
  • Brodersen P, Petersen M, Pike HM, Olszak B, Odum N, Jorgensen LB, Brown RE, Mundy J. 2002. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes and Development 16: 490502.
  • Bromley PE, Li YO, Murphy SM, Lynch DV. 2003. Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes. Archives of Biochemistry and Biophysics 417: 219226.
  • Buede R, Rinker-Schaffer C, Pinto WJ, Lester RL, Dickson RC. 1991. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. Journal of Bacteriology 173: 43254332.
  • Buehrer BM, Bell RM. 1992. Phosphorylation of long-chain bases in brain. Journal of Biological Chemistry 267: 31543159.
  • Cahoon EB, Lynch DV. 1991. Analysis of glucocerebrosides of rye (Secale cereale L. cv. Puma) leaf and plasma membrane. Plant Physiology 95: 5868.
  • Cantatore JL, Murphy SM, Lynch DV. 2000. Compartmentation and topology of glucosylceramide synthesis. Biochemical Society Transactions 28: 750752.
  • Carter HE, Koob JL. 1969. Sphingolipids in bean leaves (Phaseolus vulgaris). Journal of Lipid Research 10: 363369.
  • Carter HE, Celmer WD, Lands WEM, Mueller KL, Tomizawa HH. 1954. Biochemistry of the sphingolipides. VIII. Occurrence of a long chain base in plant phosphatides. Journal of Biological Chemistry 206: 613623.
  • Carter HE, Gigg RH, Law JH, Nakeyama T, Weber E. 1958. Biochemistry of the sphingolipides. XI. Structure of phytoglycolipids. Journal of Biological Chemistry 233: 13091314.
  • Carter HE, Hendry RA, Nojima S, Stanacev NZ, Ohno K. 1961. Biochemistry of the sphingolipids XIII. Determination of the structure of cerebrosides from wheat flour. Journal of Biological Chemistry 236: 19121916.
  • Carter HE, Brooks S, Gigg RH, Strobach DR, Suami T. 1964. Biochemistry of the sphingolipids. XVI. Structure of phytoglycolipid. Journal of Biological Chemistry 239: 743746.
  • Carter HE, Strobach DR, Hawthorne JN. 1969. Biochemistry of the sphingolipids. 18. Complete structure of tetrasaccharide phytoglycolipid. Biochemistry 8: 383388.
  • Chapman KD, Moore TS. 1993a. N-acylphosphatidylethanolamine synthesis in plants: occurrence, molecular composition and phospholipid origin. Archives of Biochemistry and Biophysics 301: 2133.
  • Chapman KD, Moore TS. 1993b. Catalytic properties of a newly discovered acyltransferase that synthesizes N-acylphosphatidylethanolamine in cottonseed (Gossypium hirsutum L.) microsomes. Plant Physiology 102: 761769.
  • Cliften P, Wang Y, Mochizuki D, Miyakawa T, Wangspa R, Hughes J, Takemoto JY. 1996. SYR2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae. Microbiology 147: 477484.
  • Coursol S, Fan LM, LeStunff H, Spiegel S, Gilroy S, Assman SM. 2003. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651654.
  • Crowther GJ, Lynch DV. 1997. Characterization of sphinganine kinase activity in corn shoot microsomes. Archives of Biochemistry and Biophysics 337: 284290.
  • Curatolo W. 1987. The physical properties of glycolipids. Biochimica et Biophysica Acta 906: 111136.
  • Dharmawardhane S, Rubinstein B, Stern AI. 1989. Regulation of transplasmalemma electron transport in oat mesophyll cells by sphingoid bases and blue light. Plant Physiology 89: 13451349.
  • Dickson RC, Lester RL. 1999a. Yeast sphingolipids. Biochimica et Biophysica Acta 1426: 347357.
  • Dickson RC, Lester RL. 1999b. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta 1438: 305321.
  • Dickson RC, Lester RL. 2002. Sphingolipid functions in Saccharomyces cerevisiae. Biochimica et Biophysica Acta 1583: 1325.
  • Dickson RC, Lester RL, Nagiec MM. 2000. Serine palmitoyltransferase. Methods in Enzymology 311: 39.
  • Dittrich F, Zajonc D, Huhne K, Hoja U, Ekici A, Greiner E, Klein H, Hofmann J, Bessoule JJ, Sperling P, Schweizer E. 1998. Fatty acid elongation in yeast – biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. European Journal of Biochemistry 252: 477485.
  • Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB. 2002. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296: 879883.
  • Dunn TM, Haak D, Monaghan E, Beeler TJ. 1998. Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14: 311321.
  • Dunn TM, Gable K, Monaghan E, Bacikova D. 2000. Selection of yeast mutants in sphingolipid metabolism. Methods in Enzymology 312: 317330.
  • El Bawab S, Birbes H, Roddy P, Szule ZM, Bielawska A, Hannun YA. 2001. Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. Journal of Biological Chemistry 276: 1675816766.
  • Fischl AS, Liu Y, Browdy A, Cremesti AE. 2000. Inositolphosphoryl ceramide synthase from yeast. Methods in Enzymology 311: 123130.
  • Fujino Y, Ohnishi M. 1983. Sphingolipids in wheat grain. Journal of Cereal Science 1: 159168.
  • Fukuchi-Mizutani M, Mizutani M, Tanaka Y, Kusumi T, Ohta D. 1999. Microsomal electron transfer in higher plants: cloning and heterologous expression of NADH-cytochrome b5 reductase from Arabidopsis. Plant Physiology 119: 353361.
  • Futerman AH, Pagano RE. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochemical Journal 280: 295302.
  • Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM. 2000. Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. Journal of Biological Chemistry 275: 75977603.
  • Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM. 2002. Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. Journal of Biological Chemistry 277: 1019410200.
  • Gilchrist DG. 1997. Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signalling. Cell Death and Differentiation 4: 689698.
  • Greenberg JT. 1997. Programmed cell death in plant–pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology 48: 525545.
  • Grilley MM, Takemoto JY. 2000. Assay of Saccharomyces cerevisiae dihydrosphingosine C-4 hydroxylase. Methods in Enzymology 311: 914.
  • Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY. 1998. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. Journal of Biological Chemistry 273: 1106211068.
  • Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A. 2001. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO Journal 20: 26552665.
  • Haak D, Gable K, Beeler T, Dunn T. 1997. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. Journal of Biological Chemistry 272: 2970429710.
  • Hakomori S. 1983. Chemistry of glycosphingolipids. In: KanferJN, HakomoriS, eds. Handbook of lipid research, vol. 3, sphingolipid biochemistry. New York, NY, USA: Plenum Press, 1164.
  • Han G, Gable K, Kohlwein SD, Beaudin F, Napier JA, Dunn TM. 2002. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. Journal of Biological Chemistry 277: 3544035449.
  • Hanada K. 2003. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochimica et Biophysica Acta 1632: 1630.
  • Hanada K, Hara T, Nishijima M. 1997. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. Journal of Biological Chemistry 272: 3210832114.
  • Hannun YA, Loomis CR, Merrill Jr AH, Bell RM. 1986. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. Journal of Biological Chemistry 261: 1260412609.
  • Haschke H, Kaiser G, Martinoia E, Hammer U, Teucher T, Dorne AJ, Heinz E. 1990. Lipid profiles of leaf tonoplasts from plants with different CO2 fixation mechanisms. Botannica Acta 103: 3238.
  • Hechtberger P, Zinser E, Saf R, Hummel K, Paltauf F, Daum G. 1994. Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae. European Journal of Biochemistry 225: 641649.
  • Heidler SA, Radding JA. 1995. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrobial Agents and Chemotherapy 39: 27652769.
  • Hillig I, Leipelt M, Zähringer U, Warnecke D, Heinz E. 2003. Formation of glucosylceramide and sterol glucoside by UDP-glucose-dependent glucosylceramide synthase from cotton. FEBS Letters 553: 365369.
  • Hirschberg K, Rodger J, Futerman AH. 1993. The long-chained sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplastic reticulum in rat liver. Biochemical Journal 290: 751757.
  • Hsieh TCY, Kaul K, Laine RA, Lester RL. 1978. Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2-deoxy-2-acetamido-d-glucopyranosyl(α1-4)-d-glucuronopyranosyl (α1-2) myoinositol-1-O-phosphoceramide. Biochemistry 17: 35753581.
  • Hsieh TCY, Lester RL, Laine RA. 1981. Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids. Journal of Biological Chemistry 256: 77477755.
  • Imai H. 1998. Glucocerebrosides containing unsaturated hydroxy fatty acids in Arabidopsis thaliana. In: SanchezJ, Cerda-OlmedoE, Martinez-ForceE, eds. Advances in plant lipid research. Seville, Spain: University of Seville Publications, 3840.
  • Imai H, Ohnishi M, Kinishita M, Kojima M, Ito S. 1995. Structure and distribution of cerebroside containing unsaturated hydroxy fatty acids in plant leaves. Bioscience, Biotechnology and Biochemistry 59: 13091313.
  • Imai H, Ohnishi M, Hotsubo K, Kojima M, Ito S. 1997. Sphingoid base composition of cerebrosides from plant leaves. Bioscience, Biotechnology and Biochemistry 61: 351353.
  • Imai H, Morimoto Y, Tamura K. 2000a. Sphingoid base composition of monoglucosylceramide in Brassicaceae. Journal of Plant Physiology 157: 453456.
  • Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T. 2000b. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids 35: 233236.
  • Ishikawa S, Sakiyama H, Suzuki G, Jwahidari KIP, Hirabayashi Y. 1996. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proceedings of the National Academy of Sciences, USA 93: 46384643.
  • Jazwinski SM, Conzelmann A. 2002. LAG1 puts the focus on ceramide signaling. International Journal of Biochemistry and Cell Biology 34: 14911495.
  • Jeckel D, Karrenbauer A, Burger KNJ, Van Meer G, Wieland FT. 1992. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. Journal of Cell Biology 117: 259267.
  • Karlsson K-A. 1970. Sphingolipid long chain bases. Lipids 5: 878891.
  • Karlsson K-A. 1982. Glycosphingolipids and surface membranes. In: ChapmanD, ed. Biological membranes. New York, NY, USA: Academic Press, 174.
  • Kaul K, Lester RL. 1975. Characterization of inositol-containing phosphosphingolipids from tobacco leaves. Plant Physiology 55: 120129.
  • Kaul K, Lester RL. 1978. Isolation of six novel phosphoinositol-containing sphingolipids from tobacco leaves. Biochemistry 17: 35693575.
  • Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M. 2000. Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Bioscience, Biotechnology and Biochemistry 64: 12711273.
  • Kawai G, Ohnishi M, Fujino Y, Ikeda Y. 1986. Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. Journal of Biological Chemistry 261: 779784.
  • Kaya K, Ramesha CS, Thompson Jr GA. 1984. On the formation of α-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid containing sphingolipids. Journal of Biological Chemistry 259: 35483553.
  • Ko J, Cheah S, Fischl AS. 1995. Solubilization and characterization of microsomal-associated phosphatidylinositol: ceramide phosphoinositol transferase from Saccharomyces cerevisiae. Journal of Food Biochemistry 19: 253267.
  • Koga J, Yamaunchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M, Ogasawara N. 1998. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. Journal of Biological Chemistry 273: 3198531991.
  • Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T. 2001. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae. Molecular and Cellular Biology 21: 109125.
  • Kojima M. 1993. Sphingolipid synthesis. In: SomervilleCR, MurataN, eds. Biochemical and molecular-biological aspects of membrane and storage lipids of plants. Rockville, MD, USA: ASPP, 191195.
  • Laine RA, Hsieh TCY. 1987. Inositol-containing sphingolipids. Methods in Enzymology 138: 186195.
  • Leipelt M, Warnecke DC, Hube B, Zahringer U, Heinz E. 2000. Characterization of UDP-glucose: ceramide glucosyltransferases from different organisms. Biochemical Society Transactions 28: 751752.
  • Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, Hube B, Heinz E. 2001. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. Journal of Biological Chemistry 276: 3362133629.
  • Lester RL, Dickson RC. 1993. Sphingolipids with inositolphosphate-containing head groups. Advances in Lipid Research 26: 253276.
  • Levine TP, Wiggins WA, Munro S. 2000. Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Molecular Biology of the Cell 11: 22672281.
  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT. 2003. Ceramide phosphorylation modulates programmed cell death in plants. Genes and Development 17: 26362641.
  • Lynch DV. 1993. Sphingolipids. In: Moore JrTS, ed. Lipid metabolism in plants. Boca Raton, FL, USA: CRC Press, 285308.
  • Lynch DV. 2000. Enzymes of sphingolipid metabolism in plants. Methods in Enzymology 311: 130149.
  • Lynch DV, Fairfield SR. 1993. Sphingolipid long-chain base synthesis in plants: characterization of serine palmitoyltransferase activity in squash fruit microsomes. Plant Physiology 103: 14211429.
  • Lynch DV, Phinney AJ. 1995. The transbilayer distribution of glucosylceramide in plant plasma membrane. In: KaderJ-C, MazliakP, eds. Plant lipid metabolism. Dordrecht, the Netherlands: Kluwer Academic Publishers, 239241.
  • Lynch DV, Steponkus PL. 1987. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv. Puma). Plant Physiology 83: 761767.
  • Lynch DV, Cahoon EB, Fairfield SR, Tannishtha. 1990. Glycosphingolipids of plant membranes. In: QuinnPJ, HarwoodJL, eds. Plant Lipid Biochemistry, Structure and Utilization. London, UK: Portland Press, 4752.
  • Lynch DV, Caffrey M, Hogan JL, Steponkus PL. 1992. Calorimetric and X-ray diffraction studies of rye glucocerebroside mesomorphism. Biophysical Journal 61: 12891300.
  • Lynch DV, Spence RA, Theiling KM, Thomas KW, Lee MT. 1993. Enzymatic reactions involved in ceramide metabolism. In: SomervilleCR, MurataN, eds. Biochemical and molecular-biological aspects of membrane and storage lipids of plants. Rockville, MD, USA: ASPP, 183190.
  • Lynch DV, Criss AK, Lehoczky JL, Bui VT. 1997. Ceramide glucosylation in bean hypocotyl microsomes: evidence that steryl glucoside serves as glucose donor. Archives of Biochemistry and Biophysics 340: 311316.
  • Mandala SM, Harris GH. 2000. Isolation and characterization of novel inhibitors of sphingolipid synthesis: australifungin, viridiofungins, rustmicin, and khafrefungin. Methods in Enzymology 311: 335348.
  • Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG, Kurtz MB. 1997. Khafrefungin, a novel inhibitor of sphingolipid synthesis. Journal of Biological Chemistry 272: 3270932714.
  • Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ, Bartizal K, Dreikorn S, Kurtz MB. 1998. Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. Journal of Biological Chemistry 273: 1494214949.
  • Mandon EC, Ehses I, Rother J, Van Echten G, Sandhoff K. 1992. Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase and sphinganine N-acyltransferase in mouse liver. Journal of Biological Chemistry 267: 1114411148.
  • Mao C, Saba JD, Obeid LM. 1999. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochemical Journal 342: 667675.
  • Mao C, Xu R, Bielawska A, Obeid LM. 2000a. Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. Journal of Biological Chemistry 275: 68766884.
  • Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM. 2000b. Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. Journal of Biological Chemistry 275: 3136931378.
  • Marasas WFO. 2001. Discovery and occurrence of the fumonisins: a historical perspective. Environmental Health Perspectives 109: 239243.
  • Van Meer G, Lisman Q. 2002. Sphingolipid transport: rafts and translocators. Journal of Biological Chemistry 277: 2585525858.
  • JrMerrill AH. 2002. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. Journal of Biological Chemistry 277: 2584325846.
  • Merrill AHJr, Sweeley CC. 1996. Sphingolipids: metabolism and cell signalling. In: VanceDE, VanceJE, eds. New comprehensive biochemistry: biochemistry of lipids, lipoproteins and membranes. Amsterdam, the Netherlands: Elsevier, 309340.
  • Merrill AHJr, Schmelz E-M, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. 1997. Sphingolipids – the enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxicology and Applied Pharmacology 142: 208225.
  • Merrill AHJr, Sullards MC, Wang E, Voss KA, Riley RT. 2001. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environmental Health Perspectives 109: 283289.
  • Michaelson LV, Longman AJ, Sayanova O, Stobart AK, Napier JA. 2002. Isolation and characterization of a cDNA encoding a Δ8 sphingolipid desaturase from Aquilegia vulgaris. Biochemical Society Transactions 30: 10731075.
  • Michel C, Van Echten-Deckert G. 1997. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Letters 416: 153155.
  • Michel C, Van Echten-Deckert G, Rother J, Sandhoff K, Wang E, Merrill Jr AH. 1997. Characterization of ceramide synthesis: a dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. Journal of Biological Chemistry 272: 2243222437.
  • Mitchell AG, Martin CE. 1997. Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingolipid-associated very long chain fatty acids. Journal of Biological Chemistry 272: 2828128288.
  • Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C. 1998. Lipid trafficking in plant cells. Progress in Lipid Research 37: 371391.
  • Morita N, Nakazato H, Okuyama H, Kim Y, Thompson Jr GA. 1996. Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza. Biochimica et Biophysica Acta 1290: 5362.
  • Mueller-Roeber B, Pical C. 2002. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiology 130: 2246.
  • Nagiec MM, Baltisberger JA, Wells GB, Lester RL, Dickson RC. 1994. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proceedings of the National Academy of Sciences, USA 91: 78997902.
  • Nagiec MM, Lester RL, Dickson RC. 1996. Sphingolipid synthesis: identification and characterization of mammalian cDNAs encoding the Lcb2 subunit of serine palmitoyltransferase. Gene 177: 237241.
  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC. 1997. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. Journal of Biological Chemistry 272: 98099817.
  • Nagiec MM, Skrzypek Nagiec EE, Lester RL, Dickson RC. 1998. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. Journal of Biological Chemistry 273: 1943719442.
  • Nakayama M, Kojima M, Ohnishi M, Ito S. 1995. Enzymatic formation of plant cerebroside: properties of UDP-glucose: ceramide glucosyltransferase in radish seedlings. Bioscience, Biotechnology and Biochemistry 59: 18821886.
  • Nakazato H, Okamoto T, Nishikoori M, Washio K, Morita N, Haraguchi K, Thompson Jr GA, Okuyama H. 1998. The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase. Plant Physiology 118: 10151020.
  • Napier JA, Sayanova O, Sperling P, Heinz E. 1999. A growing family of cytochrome b5 fusion desaturases. Trends in Plant Science 4: 24.
  • Napier JA, Michaelson LV, Dunn TM. 2002. A new class of lipid desaturase central to sphingolipid biosynthesis and signalling. Trends in Plant Science 7: 475478.
  • Ng CK, Hetherington AM. 2001. Sphingolipid-mediated signalling in plants. Annals of Botany 88: 957965.
  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM. 2001. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410: 596599.
  • Nishiura H, Tamura K, Morimoto Y, Imai H. 2000. Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana. Biochemical Society Transactions 28: 747748.
  • Norberg P, Liljenberg C. 1991. Lipids of plasma membranes prepared from oat root cells. Plant Physiology 96: 11361141.
  • Norberg P, Mason JE, Liljenberg C. 1991. Characterization of glucosylceramide from plasma membranes of plant root cells. Biochimica et Biophysica Acta 1066: 257260.
  • Norberg P, Nilsson R, Nyiredy S, Liljenberg C. 1996. Glucosylceramides of oat root plasma membranes – physicochemical behavior in natural and in model systems. Biochimica et Biophysica Acta 1299: 8086.
  • Obeid LM, Okamoto Y, Mao C. 2002. Yeast sphingolipids: metabolism and biology. Biochimica et Biophysica Acta 1585: 163171.
  • Oh CS, Toke DA, Mandala S, Martin CE. 1997. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. Journal of Biological Chemistry 272: 1737617384.
  • Ohnishi M, Fujino Y. 1982. Sphingolipids in immature and mature soybeans. Lipids 17: 803810.
  • Ohnishi M, Ito S, Fujino Y. 1983. Characterization of sphingolipids in spinach leaves. Biochimica et Biophysica Acta 752: 416422.
  • Ohnishi M, Imai H, Kojima M, Yoshida S, Murata N, Fujino Y, Ito S. 1988. Separation of cerebroside species in plants by HPLC and their phase transition temperature. Proceedings of the ISF–JOCS World Congress 11: 930935.
  • Oxley D, Bacic A. 1999. Structures of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proceedings of the National Academy of Sciences, USA 96: 1424614251.
  • Palta JP, Whitaker BD, Weiss LS. 1993. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiology 103: 793803.
  • Patton JL, Srinivasan B, Dickson RC, Lester RL. 1992. Phenotype of sphingolipid dependent strains of Saccharomyces cerevisiae. Journal of Bacteriology 174: 71807184.
  • Payne SG, Mistien S, Spiegel S. 2002. Sphingosine-1-phosphate: dual messenger functions. FEBS Letters 531: 5457.
  • Peng L, Kawagoe Y, Hogan P, Delmer D. 2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295: 147150.
  • Peskan T, Westerman M, Oelmuller R. 2000. Identification of low-density triton X-100-insoluble plasma membrane microdomains in higher plants. European Journal of Biochemistry 267: 69896995.
  • Pettus BJ, Chalfant CE, Hannun YA. 2002. Ceramide in apoptosis: an overview and current perspectives. Biochimica et Biophysica Acta 1585: 114125.
  • Qie L, Nagiec MM, Baltisberger JA, Lester RL, Dickson RC. 1997. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long-chain bases into sphingolipids. Journal of Biological Chemistry 272: 1611016117.
  • Reggiori F, Conzelmann A. 1998. Biosynthesis of inositol phosphoceramides and remodeling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes. Journal of Biological Chemistry 273: 3055030559.
  • Reggiori F, Canivenc-Gansel E, Conzelmann A. 1997. Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO Journal 16: 35063518.
  • Riley RT, Enongene E, Voss KA, Norred WP, Meredith FI, Sharma RP, Spitsbergen J, Williams DE, Carlson DB, Merill Jr AH. 2001. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environmental Health Perspectives 109: 301308.
  • Rochester CP, Kjellbom P, Andersson B, Larsson C. 1987. Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component. Archives of Biochemistry and Biophysics 255: 385391.
  • Rossler H, Rieck C, Delong T, Hoja U, Schweizer E. 2003. Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-long-chain fatty acid synthesis. Molecular Genetics and Genomics 269: 290298.
  • Saba JD, Nara F, Bielawska A, Garrett S, Hannun YA. 1997. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. Journal of Biological Chemistry 272: 2608726090.
  • Sakaki T, Zahringer U, Warnecke DC, Fahl A, Knogge W, Heinz E. 2001. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis, and other fungi under normal conditions or under heat shock and ethanol stress. Yeast 18: 679695.
  • Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae M, Hannun YA. 2000. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. Journal of Biological Chemistry 275: 3979339798.
  • Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD. 2000. Elo1p-dependent carboxy-terminal elongation of C14:1Δ(9) to C16:1Δ(11) fatty acids in Saccharomyces cerevisiae. Journal of Bacteriology 182: 36553660.
  • Schorling S, Vallee B, Barz WP, Riezman H, Oesterhelt D. 2001. Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae. Molecular Biology of the Cell 12: 34173427.
  • Shayman JA, Abe A. 2000. Glucosylceramide synthase: assay and properties. Methods in Enzymology 311: 4249.
  • Sherrier DJ, Prime TA, Dupree P. 1999. Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis 20: 20272035.
  • Shukla GS, Radin NS. 1990. Glucosylceramide synthase from mouse kidney: further characterization with an improved assay method. Archives of Biochemistry and Biophysics 283: 372378.
  • Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387: 569572.
  • Sipos G, Reggiori F, Vionnet C, Conzelmann A. 1997. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO Journal 16: 34943505.
  • Skrzypek MS, Nagiec MM, Lester RL, Dickson RC. 1999. Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces. Journal of Bacteriology 181: 11341140.
  • Spassieva S, Hille J. 2003. Plant sphingolipids today – are they still enigmatic? Plant Biology 5: 125136.
  • Spassieva SD, Markham JE, Hille J. 2002. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin induced programmed cell death. Plant Journal 32: 561572.
  • Sperling P, Heinz E. 2003. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochimica et Biophysica Acta 1632: 115.
  • Sperling P, Zahringer U, Heinz E. 1998. A sphingolipid desaturase from higher plants: identification of a new cytochrome b5 fusion protein. Journal of Biological Chemistry 273: 2859028596.
  • Sperling P, Blume A, Zahringer U, Heinz E. 2000. Further characterization of Δ(8)-sphingolipid desaturases from higher plants. Biochemical Society Transactions 28: 638641.
  • Sperling P, Libisch B, Zahringer U, Heinz E. 2001a. Functional identification of Δ8-sphingolipid desaturase from Borago officinalis. Archives of Biochemistry and Biophysics 388: 293298.
  • Sperling P, Ternes P, Moll H, Franke S, Zahringer U, Heinz E. 2001b. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Letters 494: 9094.
  • Spiegel S, Milstien S. 2002. Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry 277: 2585125854.
  • Spiegel S, Milstien S. 2003. Sphingosine 1-phosphate: an enigmatic signalling lipid. Nature Reviews: Molecular Cell Biology 4: 397407.
  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV. 1988. Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proceedings of the National Academy of Sciences, USA 85: 90269030.
  • Steponkus PL, Lynch DV, Uemura M. 1990. The influence of cold acclimation on the lipid composition and cryobehavior of the plasma membrane of isolated rye protoplasts. Philosophical Transactions of the Royal Society of London B 326: 571583.
  • Sugiura M, Kono K, Liu H, Shimizugawa T, Minekura H, Spiegel S, Kohama T. 2002. Ceramide kinase: a novel lipid kinase molecular cloning and functional characterization. Journal of Biological Chemistry 277: 2329423300.
  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. 2002. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences, USA 99: 1330713312.
  • Sullards MC, Lynch DV, Merrill Jr AH, Adams J. 2000. Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. Journal of Mass Spectrometry 35: 347353.
  • Svetek JYM, Nothnagel EA. 1999. Presence of glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins. Journal of Biological Chemistry 274: 1472414733.
  • Tamura K, Nishiura H, Mori J, Imai H. 2000. Cloning and characterization of a cDNA encoding serine palmitoyltransferase in Arabidopsis thaliana. Biochemical Society Transactions 28: 745747.
  • Tamura K, Mitsuhashi N, Hara-Nishimura I, Imai H. 2001. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. Plant and Cell Physiology 42: 12741281.
  • Tanaka T, Abbas HK, Duke S. 1993. Structure-dependent phytotoxicity of fumonisins and related compounds in duckweed bioassay. Phytochemistry 33: 779785.
  • Tavernier E, LeQuoc D, LeQuoc K. 1993. Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells. Biochimica et Biophysica Acta 1167: 242247.
  • Ternes P, Franke S, Zahringer U, Sperling P, Heinz E. 2002. Identification and characterization of a sphingolipid Δ4-desaturase family. Journal of Biological Chemistry 277: 2551225518.
  • Thevissen K, Cammue BPA, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KKA, Van Even F, Parret AHA, Broekaert WF. 2000. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin form dahlia (Dahlia merckii). Proceedings of the National Academy of Sciences, USA 97: 95319536.
  • Thompson GAJr, Okuyama H. 2000. Lipid-linked proteins of plants. Progress in Lipid Research 39: 1939.
  • Uemura M, Steponkus PL. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology 104: 479496.
  • Uemura M, Joseph RA, Steponkus PL. 1995. Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiology 109: 1530.
  • Umemura M, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J. 2000. Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant and Cell Physiology 41: 676683.
  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill Jr AH, Futerman AH. 2002. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18 (Dihydro) ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. Journal of Biological Chemistry 277: 3564235649.
  • Verhoek B, Haas R, Wrage K, Linscheid M, Heinz E. 1983. Lipids and enzymatic activities in vacuolar membranes isolated from oat primary leaves. Zeitschrift fur Naturforschung 38: 770777.
  • Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DVAH, Merrill Jr AH. 1999. Sphingolipids in food and the emerging importance of sphingolipids in nutrition. Journal of Nutrition 129: 12391250.
  • Wallis JG, Browse J. 2002. Mutants of Arabidopsis reveal many roles for membrane lipids. Progress in Lipid Research 41: 254278.
  • Wang H, Li J, Bostock RM, Gilchrist DG. 1996. Apoptosis: a functional paradigm for programmed plant cell death induced by a host selective phytotoxin and invoked during development. Plant Cell 8: 375391.
  • Wang E, Merrill Jr AH. 2000. Ceramide synthase. Methods in Enzymology 311: 1521.
  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill Jr AH. 1991. Inhibition of sphingolipid biosynthesis by fumonisins. Journal of Biological Chemistry 266: 1448614490.
  • Warnecke D, Heinz E. 2003. Recently discovered functions of glucosylceramides in plants and fungi. Cellular and Molecular Life Sciences 60: 919941.
  • Watanabe R, Funato K, Venkataraman K, Futerman AH, Riezman H. 2002. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. Journal of Biological Chemistry 277: 4953849544.
  • Webb MS, Uemura M, Steponkus PL. 1994. A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerances. Plant Physiology 104: 467478.
  • Webb MS, Irving TC, Steponkus PL. 1997. Cerebrosides alter the lyotropic and thermotropic phase of DOPE : DOPC and DOPE : DOPC : sterol mixtures. Biochimica et Biophysica Acta. 1326: 225235.
  • Weiss B, Stoffel W. 1997. Human and murine serine-palmitoyl-CoA transferase-cloning, expression and characterization of the key enzyme in sphingolipid synthesis. European Journal of Biochemistry 249: 239247.
  • Whitaker BD. 1996. Cerebrosides in mature-green and red-ripe bell pepper and tomato fruits. Phytochemistry 42: 627632.
  • Wright BS, Snow JW, O'Brien TC, Lynch DV. 2003. Synthesis of 4-hydroxysphinganine and characterization of sphinganine hydroxylase activity in corn. Archives of Biochemistry and Biophysics 415: 184192.
  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides and ceramide. Journal of Biological Chemistry 276: 3354033546.
  • Yoshida S, Uemura M. 1986. Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.). Plant Physiology 82: 807812.
  • Yoshida S, Washio K, Kenrick J, Orr G. 1988. Thermotropic properties of lipids extracted from plasma membrane and tonoplast isolated form chilling-sensitive mung bean (Vigna radiata[L.] Wilczek). Plant and Cell Physiology 29: 14111416.
  • Zhang G, Slaski JJ, Archambault DJ, Taylor GJ. 1997. Alterations of plasma membrane lipids in aluminum-resistant and aluminum-sensitive wheat genotypes in response to aluminum stress. Physiologia Plantarum 99: 302308.
  • Zhao C, Beeler T, Dunn T. 1994. Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. Journal of Biological Chemistry 269: 2148021488.
  • Zhong W, Murphy DJ, Georgopapadakou NH. 1999. Inhibition of yeast inositol phosphorylceramide synthase by aureobasidin A measured by a fluorometric assay. FEBS Letters 463: 241244.