SEARCH

SEARCH BY CITATION

References

  • Adriaensen K, Van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV. 2004. A zinc-adapted fungus protects pines from zinc stress. New Phytologist 161: 549555.
  • Al-Hiyaly SA, McNeilly T, Bradshaw AD. 1988. The effect of zinc contamination from electricity pylons – Evolution in a replicated situation. New Phytologist 110: 571580.
  • Al-Hiyaly SAK, McNeilly T, Bradshaw AD. 1990. The effect of zinc contamination from electricity pylons. Contrasting patterns of evolution in five grass species. New Phytologist 114: 183190.
  • Al-Hiyaly SAK, McNeilly T, Bradshaw AD, Mortimer AM. 1993. The effect of zinc contamination from electricity pylons. Genetic constraints on selection for zinc tolerance. Heredity 70: 2232.
  • Arnolds E, Kuyper Th, W, Noordeloos ME. 1995. Overzicht Van de Paddestoelen in Nederland. Wijster, The Netherlands: The Dutch Mycological Society.
  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO. 2003b. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytologist 159: 411419.
  • Assunção AGL, Schat H, Aarts MGM. 2003a. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist 159: 351360.
  • Baar J, Horton TR, Kretzer AM, Bruns TD. 1999. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytologist 143: 409418.
  • Baker AJM, Grant CJ, Martin MH, Shaw SC, Whitebrook J. 1986. Induction and loss of cadmium tolerance in Holcus lanatus L. & other grasses. New Phytologist 102: 575587.
  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research 104: 13661371.
  • Bradshaw AD, McNeilly T. 1981. Evolution and pollution. London, UK: Edward Arnold.
  • Bruns TD, Tan J, Bidartando M, Szaro TM, Redecker D. 2002. Survival of Suillus pungens and Amanita francheti ectomycorrhizal genets was rare or absent after a stand-replacing fire. New Phytologist 155: 517523.
  • Cairney JWG. 1999. Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9: 125135.
  • Chaudri AM, Knight BP, Barbosa-Jefferson VL, Preston S, Paton GI, Killham K, Coad N, Nicholson FA, Chambers BJ, McGrath SP. 1999. Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays. Environmental Science and Technology 33: 18801885.
  • Colpaert JV, Van Assche JA. 1987. Heavy metal tolerance in some ectomycorrhizal fungi. Functional Ecology 1: 415421.
  • Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J. 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147: 367379.
  • Dahlberg A, Finlay RD. 1999. Suillus. In: CairneyJWG, ChambersSM, eds. Ectomycorrhizal fungi. Key genera in profile. Berlin, Germany: Springer Verlag, 3364.
  • Denny HJ, Wilkins DA. 1987. Zinc tolerance in Betula spp. III. Variation in response to zinc among ectomycorrhizal associates. New Phytologist 106: 535544.
  • Díaz-Raviña M, Bååth E. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology 62: 29702977.
  • Diels L, Mergeay M. 1990. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Applied and Environmental Microbiology 56: 14851491.
  • Ernst WHO. 1990. Mine vegetations in Europe. In: ShawAJ, ed. Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL, USA: CRC Press, 2137.
  • Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: –11.
  • Hartley J, Cairney JWG, Meharg AA. 1997a. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil 189: 303319.
  • Hartley J, Cairney JWG, Sanders FE, Meharg AA. 1997b. Toxic interactions of metal ions (Cd2+, Pb2+, Zn2+ and Sb3–) on in vitro biomass production of ectomycorrhizal fungi. New Phytologist 137: 551562.
  • Jones MD, Durall DM, Cairney JWG. 2003. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytologist 157: 399422.
  • Knight BP, Chaudri AM, McGrath SP, Giller KE. 1998. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environmental Pollution 99: 293298.
  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE. 2002. Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biology and Biochemistry 34: 519529.
  • Levinton JS, Suatoni E, Wallace W, Junkins R, Kelaher B, Allen BJ. 2003. Rapid loss of genetically based resistance to metals after cleanup of a Superfund site. Proceedings of the National Academy of Sciences, USA 100: 98899891.
  • Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139153.
  • Meharg AA, Cairney JWG. 2000. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research 30: 69112.
  • Molina R, Trappe JM, Grubisha LC, Spatafora JW. 1999. Rhizopogon. In: CairneyJWG, ChambersSM, eds. Ectomycorrhizal fungi. Key genera in profile. Berlin, Germany: Springer Verlag, 129161.
  • Nielsen HD, Brownlee C, Coelho SM, Brown MT. 2003. Inter- population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytologist 160: 157165.
  • Pennanen T, Frastegård A, Fritze H, Bååth E. 1996. Phospholipid fatly acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology 62: 420428.
  • Rengel Z. 2000. Ecotypes of Holcus lanatus tolerant to Zn toxicity also tolerate zinc deficiency. Annals of Botany 86: 11191126.
  • Sawyer NA, Chambers SM, Cairney JWG. 2003. Variation in nitrogen source utilisation by nine Amanita muscaria genotypes from Australian Pinus radiata plantations. Mycorrhiza 13: 217221.
  • Schat H, Verkleij JAC. 1998. Biological interactions: The role for non-woody plants in phytorestoration: Possibilities to exploit adaptive heavy metal tolerance. In: VangronsveldJ, CunninghamSD, eds. Metal-contaminated soils: in situ inactivation and phytorestoration. Berlin, Germany: Springer Verlag, 5165.
  • Shaw J. 1988. Genetic variation for tolerance to copper and zinc within and among populations of the moss, Funaria hygrometrica Hedw. New Phytologist 109: 211222.
  • Turnau K, Kottke I, Dexheimer J. 1996. Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycological Research 100: 1622.
  • Walley KA, Khan MSI, Bradshaw AD. 1974. The potential for evolution of heavy metal tolerance in plants. I. Copper and zinc tolerance in Agrostis tenuis. Heredity 32: 309319.
  • Wilkinson DM, Dickinson NM. 1995. Metal resistance in trees: The role of mycorrhizae. Oikos 72: 298300.
  • Wu L, Lin S-H. 1990. Copper tolerance and copper uptake of Lotus purshianus (Benth.) Clem. and Clem. and its symbiotic Rhizobium loti derived from a copper mine waste population. New Phytologist 116: 531539.