SEARCH

SEARCH BY CITATION

References

  • Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S. 2004. Responses of spring phenology to climate change. New Phytologist 162: doi: 10.1111/j.1469-8137.2004.01059.x
  • Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: BigginsJ, ed. Progress in photosynthesis research. Dordrecht, The Netherlands: Martinus-Nijhoff, 221224.
  • Carter GA, Bahadur R, Norby RJ. 2000. Effects of elevated atmospheric CO2 and temperature on leaf optical properties in Acer saccharum. Environmental and Experimental Botany 43: 267273.
  • Clark H, Newton PCD, Bell CC, Glasgow EM. 1997. Dry matter yield, leaf growth and population dynamics in Lolium perenne/Trifolium repens-dominated pasture turves exposed to two levels of elevated CO2. Journal of Applied Ecology 34: 304316.
  • Comins HN, McMurtrie RE. 1993. Long-term response of nutrient-limited forests to CO2 enrichment – equilibrium behavior of plant-soil models. Ecological Applications 3: 666681.
  • Committee on Global Change Research. 1999. Global environmental change: research pathways for the next decade. Washington, DC, USA: National Academy Press.
  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7: 357373.
  • Drake BG, GonzalezMeler MA, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609639.
  • Edwards NT, Norby RJ. 1998. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant and Soil 206: 8597.
  • Farquhar GD, Caemmerer SV, Berry JA. 1980. A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149: 7890.
  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132: 567578.
  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH. 2002. Forest carbon balance under elevated CO2. Oecologia 131: 250260.
  • Hänninen H. 1995. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany 73: 183199.
  • Harrison SP, Prentice CI. 2003. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9: 9831004.
  • Hu SJ, Firestone MK, Chapin FS. 1999. Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology and Evolution 14: 433437.
  • Hungate BA, Canadell J, Chapin FS III. 1996. Plant species mediate changes in soil microbial N under elevated CO2. Ecology 77: 25052515.
  • Hungate BA, Chapin FS, Zhong H, Holland EA, Field CB. 1997. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109: 149153.
  • Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB. 2003. Nitrogen and climate change. Science 302: 15121513.
  • Idso SB, Kimball BA. 1993. Tree growth in carbon dioxide enriched air and its implications for global carbon cycling and maximum levels of atmospheric CO2. Global Biogeochemical Cycles 7: 537555.
  • Ineson P, Cotrufo MF, Bol R, Harkness DD, Blum H. 1996. Quantification of soil carbon inputs under elevated CO2: C-3 plants in a C-4 soil. Plant and Soil 187: 345350.
  • IPCC. 2001a. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (HoughtonJT, DingY, GriggsDJ, NoguerM, Van Der LindenPJ, DaiX, MaskellK, JohnsonCA, eds.). Cambridge UK: Cambridge University Press.
  • IPCC. 2001b. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (McCarthyJJ, CanzianiOF, LearyNA, DokkenDJ, WhiteKS, eds.). Cambridge UK: Cambridge University Press.
  • Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE Jr. 2004. Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry (In press).
  • Lilley JM, Bolger TP, Gifford RM. 2001. Productivity of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytologist 150: 371383.
  • Lloyd J, Farquhar GD. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Functional Ecology 10: 432.
  • Lloyd J, Taylor JA. 1994. On the temperature-dependence of soil respiration. Functional Ecology 8: 315323.
  • Long SP. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations – has its importance been underestimated? Plant, Cell & Environment 14: 729739.
  • Luo Y. 2001. Transient ecosystem responses to free-air CO2 enrichment: Experimental evidence and methods of analysis. New Phytologist. 152: 38.
  • Luo Y, Reynolds JF. 1999. Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80: 15681583.
  • Luo Y, Meyerhoff PA, Loomis RS. 1995. Seasonal patterns and vertical distributions of fine roots of alfalfa (Medicago-sativa L.). Field Crops Research 40: 119127.
  • Luo Y, Wan S, Hui D, Wallace L. 2001a. Acclimatization of soil respiration to warming in a tall grass prairie. Nature. 413: 622625.
  • Luo Y, Wu L, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH. 2001b. Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs. 71: 357376.
  • Luo Y, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi A, Lichter J, Schlesinger WH. 2003. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochemical Cycles 17: Art. no. 1021.
  • Luo Y, Su B, Currie WS, Dukes J, Finzi A, Hartwig U, Hungate B, McMurtrie R, Parton WJ, Pataki D, Shaw R, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2 concentration. Bioscience (In press).
  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 13851387.
  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15: 183206.
  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149: 247264.
  • Medlyn BE, McMurtrie RE, Dewar RC, Jeffreys MP. 2000. Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. Canadian Journal of Forest Research 30: 873888.
  • Melillo J, Janetos A, Schimel D, Kittel T. 2001. Vegetation and biogeochemical scenarios. In: National Assessment Synthesis Team (eds). Climate change impacts on the United States: the potential consequences of climate variability and change. Report for the US Global Change Research Program. Cambridge UK: Cambridge University Press, 7391.
  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 21732176.
  • Morison JIL, Lawlor DW. 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell & Environment 22: 659682.
  • Naumburg E, Loik ME, Smith SD. 2004. Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO2. New Phytologist 162: doi: 10.1111/j.1469-8137.2004.01023.x
  • Norby RJ, O'Neill EG, Hood WG, Luxmoore RJ. 1987. Carbon allocation, root exudation, and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiology 3: 203210.
  • Norby RJ, Edwards NT, Riggs JS, Abner CH, Wullschleger SD, Gunderson CA. 1997. Temperature-controlled open-top chambers for global change research. Global Change Biology 3: 259267.
  • Norby RJ, Long TM, Hartz-Rubin JS, O'Neill EG. 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant and Soil 224: 1529.
  • Norby RJ, Cotrufo MF, Ineson P, O'Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition – a synthesis. Oecologia 127: 153165.
  • Norby RJ, Hanson PJ, O'Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RT, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12: 12611266.
  • Norby RJ, Hartz-Rubin J, Verbrugge MJ. 2003. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology 9: 17921801.
  • Olszyk DM, Johnson MG, Tingey DT, Rygiewicz PT, Wise C, VanEss E, Benson A, Storm MJ, King R. 2003. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Canadian Journal of Forest Research 33: 269278.
  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469472.
  • Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Science Society of America Journal 51: 11731179.
  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Moya EG, Kamnalrut A, Kinyamario JI. 1993. Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7: 785809.
  • Pastor J, Post WM. 1988. Response of northern forests to CO2-induced climate change. Nature 334: 5558.
  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K. 1997. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology 3: 363377.
  • Peltola H, Kilpelainen A, Kellomaki S. 2002. Diameter growth of Scots pine (Pinus sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. Tree Physiology 22: 963972.
  • Poorter H, Pérez-Soba N. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129: 120.
  • Potvin C, Vasseur L. 1997. Long-term CO2 enrichment of a pasture community species richness, dominance, and succession. Ecology 78: 666677.
  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD. 1991. A general biogeochemical model describing the responses of the C-cycle and N-cycle in terrestrial ecosystems to changes in CO2, climate, and N-deposition. Tree Physiology 9: 101126.
  • Rastetter EB, Agren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecological Applications 7: 444460.
  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410: 809812.
  • Running SW, Hunt ER Jr. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: EhleringerJR, FieldC, eds. Scaling processes between leaf and landscape levels. San Diego, CA, USA: Academic Press, 141158.
  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543562.
  • Saleska SR, Shaw MR, Fischer ML, Dunne JA, Still CJ, Holman ML, Harte J. 2002. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles 16: Art. no. 1055.
  • Schenk U, Jager HJ, Weigel HJ. 1997. The response of perennial ryegrass/white clover swards to elevated atmospheric CO2 concentrations. 1. Effects of competition and species composition and interaction with N supply. New Phytologist 135: 6779.
  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2000. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298: 19871990.
  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50: 871881.
  • Stromgren M, Linder S. 2002. Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Global Change Biology 8: 11951204.
  • Thompson MV, Randerson JT. 1999. Impulse response functions of terrestrial carbon cycle models: method and application. Global Change Biology 5: 371394.
  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J. 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B: 414452.
  • Turnbull MH, Tissue DT, Murthy R, Wang X, Sparrow AO, Griffin KL. 2004. Nocturnal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoides. New Phytologist 161: 819826.
  • VEMAP members. 1995. Vegetation/ecosystems modeling and analysis project (VEMAP): comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystems responses to climate change and CO2 doubling. Global Biogeochemical Cycles 9: 407437.
  • Wan S, Norby RJ, Pregitzer KS, Ledford J, O'Neill EG. 2004. CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 162: in press.
  • Wang YP, Rey A, Jarvis PG. 1998. Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biology 4: 797807.
  • Williams RS, Norby RJ, Lincoln DE. 2000. Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Global Change Biology 6: 685695.
  • Williams RS, Lincoln DE, Norby RJ. 2003. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137: 114122.
  • Woodwell GM. 1986. Global warming and what we can do about it. Amicus Journal. 8(4): 812.
  • Wright RF. 1998. Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX Project). Ecosystems 1: 216225.
  • Wullschleger SD, Gunderson CA, Hanson PJ, Wilson KB, Norby RJ. 2002. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale. New Phytologist 153: 485496.
  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH. 2003. Soil nitrogen cycling under elevated CO2: A synthesis of forest FACE experiments. Ecological Applications 13: 15081514.
  • Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB. 2003. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the USA 100: 76507654.