SEARCH

SEARCH BY CITATION

References

  • Aerts R, Wallén B, Malmer N. 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subjected to low and high atmospheric nitrogen supply. Journal of Ecology 80: 131140.
  • Aerts R, Wallén B, Malmer N, De Caluwe H. 2001. Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. Journal of Ecology 89: 292299.
  • Baxter R, Emes MJ, Lee DS. 1992. Effects of experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytologist 120: 265274.
  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Vasander H, Wallén B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology 7: 591598.
  • Bobbink R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717738.
  • Bobbink R, Roelofs JGM. 1995. Nitrogen critical load for natural and semi-natural ecosystems: the empirical approach. Water, Air, and Soil Pollution 85: 24132418.
  • Bragazza L, Gerdol R, Rydin H. 2003. Effects of mineral and nutrient input on mire bio-geochemistry in two geographical regions. Journal of Ecology 91: 417426.
  • Cape JN, Leith ID. 2002. The contribution of dry deposited ammonia and sulphur dioxide to the composition of precipitation from continuously open gauges. Atmospheric Environment 36: 59835992.
  • Ellermann T, Hertel O, Kemp K, Monies C. 2002. Atmosfaerisk deposition 2001. NOVA 2003. Miljøundesøglen, Denmark: National Environmental Research Institute Technical Report nr 418.
  • Elser JJ, Dobberfuhl D, MacKay NA, Schampel JH. 1996. Organism size, life history, and N : P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience 46: 674684.
  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. 2000. Nutritional constraints in terrestrial and freshwater food webs. Science 408: 578580.
  • Erisman JW, Hensen A, Flower D, Flechard CR, Gruner A, Spindler G, Duyzer JH, Weststrate H, Fromer F, Vonk AW, Jaarsveld HV. 2001. Dry deposition monitoring in Europe. Water, Air and Soil Pollution, Focus 1: 1727.
  • Erisman JW, Menne MG, Flower D, Flechard CR, Spindler G, Gruner A, Duyzer JH, Ruigrok W, Wyers GP. 1998. Deposition monitoring in Europe. Environmental Monitoring and Assessment 53: 279295.
  • Geβler A, Rennenberg H. 1998. Atmospheric ammonia: mechanisms of uptake and impacts on N metabolism of plants. In: De Kork, LJ, Stulen, I, eds. Responses of plant metabolism to air pollution. Leiden, The Netherlands: Backhuys, 8194 .
  • Greven HC. 1992. Changes in the moss flora of the Netherlands. Biological Conservation 59: 133137.
  • Gunnarsson U, Rydin H. 2000. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytologist 147: 527537.
  • Güsewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics 5: 3761.
  • Güsewell S, Koerselman W, Verhoeven JTA. 2003. Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications 13: 372384.
  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, Van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. Journal of Ecology 89: 268279.
  • Hogg P, Squires P, Fitter AH. 1995. Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biological Conservation 71: 143153.
  • Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F. 2002. Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biology 8: 11301138.
  • Jauhiainen J, Vasander H, Silvola J. 1998a. Nutrient concentration in Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations. Plant Ecology 138: 149160.
  • Jauhiainen J, Wallén B, Malmer N. 1998b. Potential NH4+ and NO3 uptake in seven Sphagnum species. New Phytologist 138: 287293.
  • Jefferies RL, Maron JL. 1997. The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystems processes. Trends in Ecology and Evolution 12: 7478.
  • Jordan C. 1997. Mapping of rainfall chemistry in Ireland 1972–94. Proceedings of the Royal Irish Academy 97B: 5373.
  • Koerselman W, Meuleman AFM. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 14411450.
  • Kooijman AM, Bakker C. 1994. The acidification capacity of wetland bryophytes as influenced by simulated clean and polluted rain. Aquatic Botany 48: 133144.
  • Lamers LPM, Bobbink R, Roelofs JGM. 2000. Natural nitrogen filter fails in polluted raised bogs. Global Change Biology 6: 583586.
  • Limpens J, Berendse F. 2003b. How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103: 537547.
  • Limpens J, Berendse F. 2003c. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135: 339345.
  • Limpens J, Berendse F, Klees H. 2003a. N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist 157: 339347.
  • Luken JO. 1985. Zonation of Sphagnum mosses: interactions among shoot growth, growth form, and water balance. Bryologist 88: 374379.
  • Malmer N. 1988. Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53: 105120.
  • Nordin A, Gunnarsson U. 2000. Amino acid accumulation and growth of Sphagnum under different levels of N deposition. Ecoscience 7: 474480.
  • Øien DI, Moen A. 2001. Nutrient limitation in boreal plant communities and species influenced by scything. Applied Vegetation Science 4: 197206.
  • Olde Venterink H, Van Der Vliet RE, Wassen MJ. 2001. Nutrient limitation along a productivity gradient in wet meadows. Plant and Soil 234: 171179.
  • Pearson J, Stewart GR. 1993. The deposition of atmospheric ammonia and its effects on plants. New Phytologist 125: 283305.
  • Press MC, Lee JA. 1983. Acid phosphatase activity in Sphagnum species in relation to phosphate nutrition. New Phytologist 93: 567573.
  • Rudolph HJ, Hohlfeld J, Jacubowski S, Von der Lage P, Matlok H, Schmidt H. 1993. Nitrogen metabolism of Sphagnum. Advances in Bryology 5: 79104.
  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy Poff N, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287: 17701774.
  • Sehmel GA. 1980. Particle and gas dry deposition: a review. Atmospheric Environment 14: 9831011.
  • Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, Van Der Knaap WO. 1998. History of atmospheric lead deposition since 12 370 14C yr BP from a peat bog, Jura mountains, Switzerland. Science 281: 16351640.
  • Soares AS, Pearson J. 1997. Short-term physiological responses of mosses to atmospheric ammonium and nitrate. Water, Air, and Soil Pollution 93: 225242.
  • Tait D, Thaler B. 2000. Atmospheric deposition and lake chemistry trends at a high mountain site in the eastern Alps. Journal of Limnology 59: 6171.
  • Tessier JT, Raynal DJ. 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology 40: 523534.
  • Twenhöven FL. 1992. Competition between two Sphagnum species under different deposition levels. Journal of Bryology 17: 7180.
  • Van der Heijden E, Verbeek SK, Kuiper PJC. 2000. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biology 6: 201212.
  • Van Duren IC, Pegtel DM. 2000. Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant and Soil 220: 3547.
  • Van Leeuwen EP, Draaijers GPJ, Erisman JW. 1996. Mapping wet deposition of acidifying components and base cations over Europe using measurements. Atmospheric Environment 30: 24952511.
  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737750.
  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and sea: how can it occur? Biogeochemistry 13: 87115.
  • Whelpdale DM, Summers PW, Sanhueza E. 1997. A global overview of atmospheric acid deposition fluxes. Environmental Monitoring and Assessment 48: 217247.
  • Willby NJ, Pulford ID, Flowers TH. 2001. Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytologist 152: 463481.
  • Williams BL, Silcock DJ. 2001. Does nitrogen addition to raised bogs influence peat phosphorus pools? Biogeochemistry 53: 307321.
  • Williams BL, Silcock DJ, Young M. 1999. Seasonal dynamics of N in two Sphagnum moss species and the underlying peat treated with 15NH415NO3. Biogeochemistry 45: 285302.