SEARCH

SEARCH BY CITATION

References

  • Becker R, Fritz E, Manteuffel R. 1995. Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiolology 108: 269275.
  • Beneš I, Schreiber K, Ripperger H, Kircheiss A. 1983. Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39: 261262.
  • Bereczky Z, Wang H-Y, Schubert V, Ganal M, Bauer P. 2003. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. Journal of Biological Chemistry 278: 2469724704.
  • DiDonato RJ, Jr Roberts LA, Sanderson T, Eisley RB, Walker EL. 2004. Arabidopsis yellow stripe-like2 (AtYSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant Journal 39: 403414.
  • Gustafson RL, Martell AE. 1963. Hydrolytic tendencies of ferric chelates. Journal of the American Chemical Society 67: 576582.
  • Hider RC. 1984. Siderophore mediated absorption of iron. Structure and Bonding 58: 2587.
  • Kawai S, Kamei S, Matsuda Y, Ando R, Kondo S, Ishizawa A, Alam S. 2001. Concentrations of iron and phytosiderophores in xylem sap of iron-deficient barley plants. Soil Science and Plant Nutrition 47: 265272.
  • Ling H-Q, Koch G, Bäumlein H, Ganal MW. 1999. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proceedings of the National Academy of Sciences, USA 96: 70987103.
  • Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W. 2001. Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213: 967976.
  • Reichman SM, Parker DR. 2002. Revisiting the metal-binding chemistry of nicotianamine and 2′-deoxymugineic acid. Implications for iron nutrition in Strategy II plants. Plant Physiolology 129: 14351438.
  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, Von Wirén N. 2004. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Journal of Biological Chemistry 279: 90919096.
  • Schuger HJ, Hubbard AT, Anson FC, Gray HB. 1969. Electrochemical and spectral studies of dimeric iron (III) complexes. Journal of the American Chemical Society 90: 7177.
  • Schuger HJ, Rossman GR, Barraclough CG, Gray HB. 1972. Electronic structure of oxo-bridged iron(III) dimers. Journal of the American Chemical Society 94: 26832690.
  • Sugiura Y, Nomoto K. 1984. Phytosiderophores: structures and properties of mugineic acids and their metal complexes. Structure and Bonding 58: 107135.
  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. 2003. Role of nicotianamine in the intracellular delivery of metals and reproductive development. Plant Cell 15: 12631280.
  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumlöffel D, Lebrun M, Lobinski R. 2003. Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Analytical Chemistry 75: 27402745.
  • Von Wirén N, Khodr H, Hider RC. 2000. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiology 124: 11491157.
  • Von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC. 1999. Nicotianamine Chelates Both FeIII and FeII. Implications for Metal transport in plants. Plant Physiology 119: 11071114.