SEARCH

SEARCH BY CITATION

Keywords:

  • epigenetics;
  • evolution;
  • gene expression;
  • hybridization;
  • polyploidy;
  • non-Mendelian inheritance

Summary

A fundamental precept of evolutionary biology is that natural selection acts on phenotypes determined by DNA sequence variation within natural populations. Recent advances in our understanding of gene regulation, however, have elucidated a spectrum of epigenetic molecular phenomena capable of altering the temporal, spatial, and abundance patterns of gene expression. These modifications may have morphological, physiological, and ecological consequences, and are heritable across generations, suggesting they are important in evolution. A corollary is that genetic variation per se is not always a prerequisite to evolutionary change. Here, we provide an introduction to epigenetic mechanisms in plants, and highlight some of the empirical studies illustrative of the possible connections between evolution and epigenetically mediated alterations in gene expression and morphology.