SEARCH

SEARCH BY CITATION

References

  • Allard V, Newton PCD, Lieffering M, Clark H, Matthew C, Soussana JF, Gray YS. 2003. Nitrogen cycling in grazed pastures at elevated CO2: N returns by ruminants. Global Change Biology 9: 17311742.
  • Almeida JPF, Lüscher A, Frehner M, Oberson A, Nösberger J. 1999. Partitioning of P and the activity of root acid phosphatase in white clover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilisation. Plant and Soil 210: 159166.
  • Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A. 2000. Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51: 12891297.
  • Arnone JA III. 1999. Symbiotic N2 fixation in a high Alpine grassland: effects of four growing seasons of elevated CO2. Functional Ecology 13: 383387.
  • Conroy J, Hocking P. 1993. Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Physiologia Plantarum 89: 570576.
  • Conroy JP, Milham PJ, Barlow EWR. 1992. Effect of nitrogen and phosphorus availability on the growth-response of Eucalyptus grandis to high CO2. Plant, Cell & Environment 15: 843847.
  • Cotrufo MF, Ineson P, Scott A. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 4354.
  • Edwards EJ, McCaffery S, Evans JR. 2005. Phosphorus status determines biomass response to elevated CO2 in a legume : C4 grass community. Global Change Biology. doi:10.1111/j.1365-2486.2005.01049.x
  • Elgersma A, Hassink J. 1997. Effects of white clover (Trifolium repens L.) on plant and soil nitrogen and soil organic matter in mixtures with perennial ryegrass (Lolium perenne L.). Plant and Soil 197: 177186.
  • Frame J, Newbould P. 1986. Agronomy of White Clover. Advances in Agronomy 40: 188.
  • Gifford RM. 1992. Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. Advances in Bioclimatology 1: 2558.
  • Gifford RM. 1994. The global carbon-cycle – a viewpoint on the missing sink. Australian Journal of Plant Physiology 21: 115.
  • Gifford RM, Barrett DJ, Lutze JL. 2000. The effects of elevated [CO2] on the C : N and C : P mass ratios of plant tissues. Plant and Soil 224: 114.
  • Grünzweig JM, Körner C. 2003. Differential phosphorus and nitrogen effects drive species and community responses to elevated CO2 in semi-arid grassland. Functional Ecology 17: 766777.
  • Hartwig UA, Lüscher A, Daepp M, Blum H, Soussana JF, Nösberger J. 2000. Due to symbiotic N2 fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertile, mixed grassland. Plant and Soil 224: 4350.
  • Hewitt EJ. 1966. Sand and water culture methods used in the study of plant nutrition. Technical Communication Number 22. East Malling, UK: Commonwealth Bureau of Horticulture and Plantation Crops.
  • Holford ICR. 1981. Changes in nitrogen and organic carbon of wheat-growing soils after various periods of grazed lucerne, extended fallowing and continuous wheat. Australian Journal of Soil Research 19: 239249.
  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA. 2001. Climate Change 2001 – The Scientific Basis. Cambridge, UK: Cambridge University Press.
  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG. 1999. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5: 781789.
  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB. 2003. Nitrogen and climate change. Science 302: 15121513.
  • Irving GCJ, McLaughlin MJ. 1990. A rapid and simple field-test for phosphorus in Olsen and Bray No. 1 extracts of soil. Communications in Soil Science and Plant Analysis 21: 22452255.
  • Koerselman W, Meuleman AFM. 1996.The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 14411450.
  • Labidi M, Dahmane ABK, Ben Mansour H, Khiari L, Ahmad D. 2003. Soil P-status and cultivar maturity effects on pea–Rhizobium symbiosis. Plant and Soil 252: 339348.
  • Ledgard SF, Steele KW. 1992. Biological nitrogen-fixation in mixed legume grass pastures. Plant and Soil 141: 137153.
  • Lee TD, Reich PB, Tjoelker MG. 2003. Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137: 2231.
  • Lilley JM, Bolger TP, Peoples MB, Gifford RM. 2001. Nutritive value and the nitrogen dynamics of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions. New Phytologist 150: 385395.
  • Lüscher A, Hartwig UA, Suter D, Nösberger J. 2000. Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biology 6: 655662.
  • Manderscheid R, Bender J, Schenk U, Weigel HJ. 1997. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration. Environmental and Experimental Botany 38: 131143.
  • McCaskill MR, Cayley JWD. 2000. Soil audit of a long-term phosphate experiment in south-western Victoria: total phosphorus, sulfur, nitrogen, and major cations. Australian Journal of Agricultural Research 51: 737748.
  • McKey D. 1994. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: SprentJI, McKeyD, eds. Advances in Legume Systematics 5: The Nitrogen Factor. Kew, UK: Royal Botanic Gardens, 211228.
  • Mehlich A. 1984. Mehlich-3 soil test extractant – a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis 15: 14091416.
  • Murray MB, Smith RI, Friend A, Jarvis PG. 2000. Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiology 20: 421434.
  • Niinemets U, Tenhunen JD, Canta NR, Chaves MM, Faria T, Pereira JS, Reynolds JF. 1999. Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Global Change Biology 5: 455470.
  • Niklaus PA, Leadley PW, Stöcklin J, Körner C. 1998. Nutrient relations in calcareous grassland under elevated CO2. Oecologia 116: 6775.
  • Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253280.
  • Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK. 2004. Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agriculture Ecosystems and Environment 101: 3138.
  • Paynel F, Murray PJ, Cliquet JB. 2001. Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant and Soil 229: 235243.
  • Pearson HL, Vitousek PM. 2002. Soil phosphorus fractions and symbiotic nitrogen fixation across a substrate–age gradient in Hawaii. Ecosystems 5: 587596.
  • Peoples MB, Baldock JA. 2001. Nitrogen dynamics of pastures: nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Australian Journal of Experimental Agriculture 41: 327346.
  • Peoples MB, Gault RR, Scammell GJ, Dear BS, Virgona J, Sandral GA, Paul J, Wolfe EC, Angus JF. 1998. Effect of pasture management on the contributions of fixed N to the N economy of ley-farming systems. Australian Journal of Agricultural Research 49: 459474.
  • Poorter H, Navas ML. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175198.
  • Raupach MR, Kirby JM, Barrett DJ, Briggs PR. 2001. Balances of water, carbon, nitrogen and phosphorus in Australian landscapes: (1) Project description and results. CSIRO Land and Water. Technical Report 40/01. http://www.clw.csiro.au/publications/technical2001/tr40-01.pdf
  • Rice SK, Westerman B, Federici R. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecology 174: 97107.
  • Ryle GJA, Powell CE, Davidson IA. 1992. Growth of white clover, dependent on N2 fixation, in elevated CO2 and temperature. Annals of Botany 70: 221228.
  • Schäppi B, Körner C. 1997. In situ effects of elevated CO2 on the carbon and nitrogen status of alpine plants. Functional Ecology 11: 290299.
  • Schortemeyer M, Atkin OK, McFarlane N, Evans JR. 2002. N2 fixation by Acacia species increases under elevated atmospheric CO2. Plant, Cell & Environment 25: 567579.
  • Sears PD, Goodall VC, Jackman RH, Robinson GS. 1965. Pasture growth and soil fertility. VIII. The influence of grasses, white clover, fertilisers, and the return of herbage clippings on pasture production of an impoverished soil. New Zealand Journal of Agricultural Research 8: 270283.
  • Smith VH. 1992. Effects of nitrogen–phosphorus supply ratios on nitrogen-fixation in agricultural and pastoral ecosystems. Biogeochemistry 18: 1935.
  • Soussana JF, Hartwig UA. 1996. The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant and Soil 187: 321332.
  • Srivastava AC, Pal M, Sengupta UK. 2002. Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2. Biologia Plantarum 45: 395399.
  • Staddon PL, Fitter AH, Graves JD. 1999. Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biology 5: 347358.
  • Stock WD, Wienand KT, Baker AC. 1995. Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems – evidence from soil incubation studies and N15 natural-abundance values. Oecologia 101: 375382.
  • Stöcklin J, Körner CH. 1999. Interactive effects of elevated CO2, P availability and legume presence on calcareous grassland: results of a glasshouse experiment. Functional Ecology 13: 200209.
  • Stöcklin J, Schweizer K, Körner C. 1998. Effects of elevated CO2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia 116: 5056.
  • Thomas RB, Richter DD, Ye H, Heine PR, Strain BR. 1991. Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88: 415421.
  • Uselman SM, Qualls RG, Thomas RB. 1999. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant and Soil 210: 2132.
  • Vogel CS, Curtis PS, Thomas RB. 1997. Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecology 130: 6370.
  • Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nosberger J. 1996. Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiology 112: 575583.
  • Zanetti S, Hartwig UA, VanKessel C, Lüscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nösberger J. 1997. Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes? Oecologia 112: 1725.