SEARCH

SEARCH BY CITATION

References

  • Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmitt A, Ting IP. 1991. Ecophysiological comportment of the tropical CAM-tree Clusia in the field. II. Modes of photosynthesis in trees and seedlings. New Phytologist 117: 483491.
  • Berg A, Orthen B, De Mattos EA, Duarte HM, Lüttge U. 2004. Expression of crassulacean acid metabolism in Clusia hilariana Schlechtendal in different stages of development in the field. Trees 18: 553558.
  • Bittrich V, Amaral MCE. 1996. Flower morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). Kew Bulletin 51: 681694.
  • Björkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489504.
  • Black CC, Chen J-Q, Doong RL, Angelov MN, Sung SJS. 1996. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism. In: WinterK, SmithJAC, eds. Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Ecological Studies, Vol. 114. Berlin, Heidelberg, New York: Springer, 3145.
  • Boiteau P, Allorge-Boiteau L. 1995. Kalanchoë (Crassulacées) de Madagascar: systématique, écophysiologie et phytochimie. Paris, France: Editions Karthala.
  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C. 1993. Short-term changes in carbon-isotope discrimination in the C3-CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 95: 444453.
  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C. 1994. Carbon-isotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-crassulacean acid metabolism intermediate Clusia minor L. growing in Trinidad. Plant Physiology 106: 493501.
  • Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Griffiths MN, Barnes JD. 1992. On the ecophysiology of the Clusiaceae in Trinidad: expression of CAM in Clusia minor L. during the transition from wet to dry season and characterization of three endemic species. New Phytologist 122: 349357.
  • Borland AM, Griffiths H, Maxwell C, Fordham MC, Broadmeadow MSJ. 1996. CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation. Plant, Cell & Environment 19: 655664.
  • Borland AM, Laszlo IT, Leegood RC, Walker RP. 1998. Inducibility of crassulacean acid metabolism (CAM) in Clusia species; physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM. Planta 205: 342351.
  • Brandon PC. 1967. Temperature features of enzymes affecting crassulacean acid metabolism. Plant Physiology 42: 977984.
  • Brulfert J, Guerrier D, Queiroz O. 1973. Photoperiodism and enzyme activity: Balance between inhibition and induction of the crassulacean acid metabolism. Plant Physiology 51: 220222.
  • Brulfert J, Guerrier D, Queiroz O. 1975. Photoperiodism and enzyme rhythms: kinetic characteristics of the photoperiodic induction of crassulacean acid metabolism. Planta 125: 3344.
  • Buchanan-Bollig IC, Kluge M. 1981. Crassulacean acid metabolism (CAM) in Kalanchoë daigremontiana: temperature response of phosphoenolpyruvate (PEP)-carboxylase in relation to allosteric effectors. Planta 152: 181188.
  • Buchanan-Bollig IC, Kluge M, Müller D. 1984. Kinetic changes with temperature of phosphoenolpyruvate carboxylase from a CAM plant. Plant, Cell & Environment 7: 6370.
  • Carter PJ, Wilkins MB, Nimmo HG, Fewson CA. 1995. Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the control of CO2 fixation in Bryophyllum fedtschenkoi. Planta 196: 375380.
  • Cirne P, Scarano FR. 2001. Resprouting and growth dynamics after fire of the clonal shrub Andira legalis (Leguminosae) in a sandy coastal plain in southeastern Brazil. Journal of Ecology 89: 351357.
  • Crayn DM, Winter K, Smith JAC. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. Proceedings of the National Academy of Sciences, USA 101: 37033708.
  • Demmig-Adams B. 1990. Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin cycle. Biochimica et Biophysica Acta 1020: 124.
  • Demmig-Adams B, Adams WW. 1992. Photoprotection and other responses of plants to high light stress. Annual Reviews of Plant Physiology and Plant Molecular Biology 43: 599626.
  • Dias ATC, Zaluar HLT, Ganade G, Scarano FR. 2005. Canopy composition influencing plant patch dynamics in a Brazilian sandy coastal plain. Journal of Tropical Ecology 21: 343347.
  • Duarte HM, Geßler A, Scarano FR, Franco AC, De Mattos EA, Nahm M, Rennenberg H, Rodrigues PJFP, Zaluar HTL, Lüttge U. 2005. Ecophysiology of six selected shrub species in different plant communities at the periphery of the Atlantic Forest of SE Brazil. Flora 200: 456476.
  • Ellenberg H. 1981. Ursachen des Vorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora 171: 114169.
  • Eller BM, Ferrari S, Ruess BR. 1992. Spatial and diel variations of water relations in leaves of the CAM-plant Senecio medley-woodii. Botanica Helvetica 102: 193200.
  • Eller BM, Ruess BR. 1986. Modulation of CAM and water balance of Senecio medley-woodii by environmental factors and age of leaf. Journal of Plant Physiology 125: 295309.
  • Engelmann S, Bläsing OE, Gowik U, Svensson P, Westhoff P. 2003. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria– a gradual increase from C3 to C4 characteristics. Planta 217: 717725.
  • Engler A. 1925. Guttiferae. In: EnglerA, PrantlK, eds. Die natürlichen Pflanzenfamilien, 2nd edn, Vol. 21A. Leipzig, Germany: Wilhelm Engelmann, 154237.
  • Fetene M, Lüttge U. 1991. Environmental influences on carbon recycling in a terrestrial CAM bromeliad, Bromelia humilis Jacq. Journal of Experimental Botany 42: 2531.
  • Franco AC, Ball E, Lüttge U. 1990. Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia. Oecologia 85: 108114.
  • Franco AC, Ball E, Lüttge U. 1991. The influence of nitrogen, light and water stress on CO2 exchange and organic acid accumulation in the tropical C3-CAM tree, Clusia minor. Journal of Experimental Botany 42: 597603.
  • Franco AC, Ball E, Lüttge U. 1992. Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant, Cell & Environment 15: 821829.
  • Franco AC, Haag-Kerwer A, Herzog B, Grams TEE, Ball E, De Mattos EA, Scarano FR, Barreto S, Garcia MA, Mantovani A, Lüttge U. 1996. The effect of light levels on daily patterns of chlorophyll fluorescence and organic acid accumulation in the tropical tree Clusia hilariana. Trees 10: 359365.
  • Franco AC, Herzog B, Hübner C, De Mattos EA, Scarano FR, Ball E, Lüttge U. 1999. Diurnal changes in chlorophyll a fluorescence, CO2-exchange and organic acid decarboxylation in the tropical tree Clusia hilariana. Tree Physiology 19: 635644.
  • Franco AC, Olivares E, Ball E, Lüttge U, Haag-Kerwer A. 1994. In situ studies of crassulacean acid metabolism in several sympatric species of tropical trees of the genus Clusia. New Phytologist 126: 203211.
  • Gehrig HH, Aranda J, Cushman MA, Virgo A, Cushman JC, Hammel BE, Winter K. 2003. Cladogram of Panamanian Clusia based on nuclear DNA: implications for the origins of crassulacean acid metabolism. Plant Biology 5: 5970.
  • Gehrig H, Gaussmann O, Marx H, Schwarzott D, Kluge M. 2001. Molecular phylogeny of the genus Kalanchoë (Crassulaceae) inferred from nucleotide sequences of the IST-1 and IST-2 regions. Plant Sciences 160: 827835.
  • Gehrig H, Brulfert J, Kluge M. 2000. In: LourencoWR, GoodmanSM, eds. Diversity and endemism in Madagascar. Paris, France: Mémoires de la Société de Biogéographie, 7582.
  • Gehrig HH, Rösicke H, Kluge M. 1997. Detection of DNA polymorphisms in the genus Kalanchoë by RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of the species. Plant Science 125: 4151.
  • Gehrig HH, Wood JA, Cushman MA, Virgo A, Cushman JC, Winter K. 2005. Large gene family of phosphoenolpyruvate carboxylase in the crassulacean acid metabolism plant Kalanchoë pinnata (Crassulaceae) characterised by partial cDNA sequence analysis. Functional Plant Biology 32: 467472.
  • Geßler A, Duarte HM, Franco AC, Lüttge U, De Mattos EA, Nahm M, Rodrigues PJFP, Scarano FR, Rennenberg H. 2005b. Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE Brazil. III. Three legume trees in a semi-deciduous dry forest. Trees 19: 523530.
  • Geßler A, Duarte HM, Franco AC, Lüttge U, De Mattos EA, Nahm M, Scarano FR, Zaluar HLT, Rennenberg H. 2005a. Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE Brazil. II. Spatial and ontogenetic dynamics in Andira legalis, a deciduous legume tree. Trees 19: 510522.
  • Godwin H. 1977. Sir Arthur Tansley: the man and the subject. Journal of Ecology 65: 126.
  • Gould SJ. 2002. The structure of evolutionary theory. Cambridge, MA, USA: Harvard University Press.
  • Grams TEE, Haag-Kerwer A, Olivares E, Ball E, Arndt S, Popp M, Medina E, Lüttge U. 1997. Comparative measurements of chlorophyll a fluorescence, acid accumulation and gas exchange in exposed and shaded plants of Clusia minor L. and Clusia multiflora H.B.K. in the field. Trees 11: 240247.
  • Guralnick LJ, Jackson MD. 2001. The occurrence and phylogenetics of Crassulacean acid metabolism in the Portulacaceae. International Journal of Plant Science 162: 257262.
  • Guralnick LJ, Ting IP, Lord EM. 1986. Crassulacean acid metabolism in the Gesneriaceae. American Journal of Botany 53: 336345.
  • Gustafsson MHG, Bittrich V. 2003. Evolution of morphological diversity and resin secretion in flowers of Clusia L. (Clusiaceae): insights from ITS sequence variation. Nordic Journal of Botany 22: 183203.
  • Gustafsson MHG, Bittrich V, Stevens PF. 2002. Phylogeny of Clusiaceae based on rbcL sequences. International Journal of Plant Science 163: 10451054.
  • Gustafsson MHG, Winter K, Bittrich V. 2006. Diversity, phylogeny and classification of Clusia. In: LüttgeU, ed. Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecological Studies. Berlin, Heidelberg, New York: Springer. (In press.)
  • Haag-Kerwer A, Franco AC, Lüttge U. 1992. The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. Journal of Experimental Botany 43: 345352.
  • Haag-Kerwer A, Grams TEE, Olivares E, Ball E, Arndt S, Popp M, Medina E, Lüttge U. 1996. Comparative measurements of gas exchange, acid accumulation and chlorophyll a fluorescence of different species of Clusia showing C3 photosynthesis, or crassulacean acid metabolism, at the same field site in Venezuela. New Phytologist 134: 215226.
  • Hager A. 1980. The reversible, light-induced conversions of xanthophylls in the chloroplast. In: CzyganFC, ed. Pigments in plants. Stuttgart, Germany: G. Fischer, 5779.
  • Hartenburg W. 1937. Der Wasser- und Kohlensäurehaushalt tropischer Regenwaldpflanzen in sommerlicher Gewächshauskultur. Jahrbücher Wissenschaftlicher Botanik 85: 641697.
  • Herzog B, Hoffmann S, Hartung W, Lüttge U. 1999. Comparison of photosynthetic responses of the sympatric tropical C3 species Clusia multiflora H.B.K. and the C3-CAM intermediate species Clusia minor L. to irradiance and drought stress in a phytotron. Plant Biology 1: 460470.
  • Holbrook NM, Putz FE. 1996. From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant, Cell & Environment 19: 631642.
  • Holtum JAM, Aranda J, Virgo A, Gehrig HH, Winter K. 2004. δ13C values and crassulacean acid metabolism in Clusia species from Panama. Trees 18: 658668.
  • Holtum JAM, Smith JAC, Neuhaus HE. 2005. Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. Functional Plant Biology 32: 429449.
  • Horton P, Ruban AV, Walters RG. 1994. Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiology 106: 415420.
  • Kluge M. 2005. Options of photosynthesis in the genus Kalanchoë: an approach integrating the levels of biochemistry, ecophysiology, molecular taxonomy, and phytogeographic distribution of the species. Nova Acta Leopoldina Neue Folge 92, number 342: 195205.
  • Kluge M, Brulfert J, Ravelomanana D, Ziegler H. 1991. Crassulacean acid metabolism in Kalanchoë species collected in various climatic zones of Madagascar: a survey by δ13C analysis. Oecologia 88: 407414.
  • Kluge M, Lange OL, Eichmann M, Schmid R. 1973. Diurnaler Säurerhythmus bei Tillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta 112: 357372.
  • Kluge M, Ting IP. 1978. Crassulacean acid metabolism. Analysis of an ecological adaptation. Ecological Studies, Vol. 30. Berlin, Heidelberg, New York: Springer.
  • Krätz O. 2001. Alexander von Humboldt (1769–1859) auf Pflanzenjagd. In: Palmengarten, Heft 35, Palmengarten, Frankfurt M, 3346.
  • Lacerda LD, Araujo DSD, Maciel NC. 1993. Dry coastal ecosystems of the tropical Brazilian coast. In: Van der MaarelE, ed. Dry coastal ecosystems: Africa, America, Asia and Oceania. Amsterdam, the Netherlands: Elsevier, 477493.
  • Lee HSJ, Schmitt AK, Lüttge U. 1989. The response of the C3-CAM tree Clusia rosea to light and water stress. II. Internal CO2 concentration and water use efficiency. Journal of Experimental Botany 40: 171179.
  • Liebig M, Scarano FR, De Mattos EA, Zaluar HLT, Lüttge U. 2001. Ecophysiological and floristic implications of sex expression in the dioecious neotropical CAM tree Clusia hilariana Schltdl. Trees 15: 278288.
  • Lüttge U. 1986. Nocturnal water storage in plants having crassulacean acid metabolism. Planta 168: 287289.
  • Lüttge U. 1987. Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytologist 106: 593629.
  • Lüttge U. 1988. Day–night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant, Cell & Environment 11: 445451.
  • Lüttge U. 1991. Morphogenetische, physiologische und biochemische Strategien von Baumwürgern im tropischen Wald. Naturwissenschaften 78: 4958.
  • Lüttge U. 1995a. Ecophysiological basis of the diversity of tropical plants: the example of the genus Clusia. Scientia Guaianae 5: 2336.
  • Lüttge U. 1995b. Clusia: ein Modellfall der ökophysiologischen Plastizität in einer tropischen Gattung. In: Rundgespräche der Kommission für Ökologie der Bayerischen Akademie der Wissenschaften, Vol. 10. Bayerische TropenforschungEinst und jetzt. Munich, Germany: Dr. Pfeil, 173186.
  • Lüttge U. 1996. Clusia: plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: WinterK, SmithJAC, eds. Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Ecological Studies, Vol. 114. Berlin, Heidelberg, New York: Springer, 296311.
  • Lüttge U. 1999. One morphotype, three physiotypes: Sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biology 1: 138148.
  • Lüttge U. 2002. CO2-concentrating: consequences in crassulacean acid metabolism. Journal of Experimental Botany 53: 21312142.
  • Lüttge U. 2004. Ecophysiology of crassulacean acid metabolism (CAM). Annals of Botany 93: 629652.
  • Lüttge U. 2005. Genotypes – phenotypes – ecotypes: relations to crassulacean acid metabolism. Nova Acta Leopoldina Neue Folge 92, number 342: 177193.
  • Lüttge U. 2006a. Photosynthesis. In: LüttgeU, ed. Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecological Studies. Berlin, Heidelberg, New York: Springer. (In press.)
  • Lüttge U. 2006b. Physiological ecology. In: LüttgeU, ed. Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecological Studies. Berlin, Heidelberg, New York: Springer. (In press.)
  • Lüttge U. 2006c. Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecological Studies. Berlin, Heidelberg, New York: Springer. (In press.)
  • Lüttge U, Scarano FR. 2004. Ecophysiology. Revista Brasileira de Bôtanica 27: 110.
  • Lüttge U, Smith JAC, Marigo G, Osmond CM. 1981. Energetics of malate accumulation in the vacuoles of Kalanchoë tubiflora cells. FEBS Letters 126: 8184.
  • De Mattos EA, Herzog B, Lüttge U. 1999. Chlorophyll fluorescence during CAM-phases in Clusia minor L. under drought stress. Journal of Experimental Botany 50: 253261.
  • De Mattos EA, Lüttge U. 2001. Chlorophyll fluorescence and organic acid oscillations during transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae). Annals of Botany 88: 457463.
  • Maxwell K. 2002. Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. Functional Plant Biology 29: 679687.
  • Maxwell C, Griffiths H, Borland AM, Young AJ, Broadmeadow MSJ, Fordham MC. 1995. Short-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachia var. monostachia to tropical seasonal transitions under field conditions. Australian Journal of Plant Physiology 22: 771778.
  • Maxwell C, Griffiths H, Young AJ. 1994. Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas exchange characteristics, photochemical efficiency and the xanthophyll cycle. Functional Ecology 8: 746754.
  • Maxwell K, Marrison JL, Leech RM, Griffiths H, Horton P. 1999. Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. Plant Physiology 121: 8995.
  • Medina E, Delgado M, Troughton JH, Medina JD. 1977. Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166: 137152.
  • Menninger EA. 1967. Fantastic trees. New York, NY, USA: The Viking Press.
  • Murphy R, Smith JAC. 1998. Determination of cell water-relation parameters using the pressure probe: extended theory and practice of the pressure-clamp technique. Plant, Cell & Environment 21: 637657.
  • Neales TF. 1973. Effect of temperature on the assimilation of carbon dioxide by mature pineapple plants, Ananas comosus (L.) Merr. Australian Journal of Biological Science 26: 539546.
  • Nobel PS. 1988. Environmental biology of agaves and cacti. Cambridge, UK: Cambridge University Press.
  • Olivares E. 1997. Prolonged leaf senescence in Clusia multiflora H.B.K. Trees 11: 370377.
  • Olivares E, Faist K, Kluge M, Lüttge U. 1993. 14CO2 pulse-chase labelling in Clusia minor L. Journal of Experimental Botany 44: 15271533.
  • Osmond CB. 1978. Crassulacean acid metabolism: a curiosity in context. Annual Reviews of Plant Physiology 29: 379414.
  • Patiño S, Tyree MT, Herre EA. 1995. Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama. New Phytologist 129: 125134.
  • Pfündel E, Bilger W. 1994. Regulation and possible function of the violaxanthin cycle. Photosynthesis Research 42: 89109.
  • Pipoly JJ, Kearns DM, Berry PE. 1998. Clusia. In: BerryPE, HolstBK, YatskievychK, eds. Flora of the Venezuelan Guayana Caesalpiniaceae – Ericaceae, Vol. 4. St Louis, MO, USA: Missouri Botanical Garden Press, 260294
  • Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U. 1987. Crassulacean acid metabolism in tropical dicotyledonous trees of the genus Clusia. Trees 1: 238247.
  • Reinert F, Roberts A, Wilson MJ, De Ribas L, Cardinot G, Griffiths H. 1997. Graduation in nutrient composition and photosynthetic pathways across the restinga vegetation of Brazil. Botanica Acta 110: 135142.
  • Roberts A, Borland AM, Maxwell K, Griffiths H. 1998. Ecophysiology of the C3-CAM intermediate Clusia minor L. in Trinidad: seasonal and short-term photosynthetic characteristics of sun and shade leaves. Journal of Experimental Botany 49: 15631573.
  • Roberts A, Griffiths H, Borland AM, Reinert F. 1996. Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process? Oecologia 106: 2838.
  • Ruess BR, Ferrari S, Eller BM. 1988. Water economy and photosynthesis of the CAM plant Senecio medley-woodii during increasing drought. Plant, Cell & Environment 11: 583589.
  • Scarano FR. 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Annals of Botany 90: 517542.
  • Scarano FR, Cirne P, Nascimento MT, Sampaio MC, Villela D, Wendt T, Zaluar HLT. 2004. Ecologia vegetal: integrando ecosistema, comunidades, populações e organismos. In: RochaCFD, EstevesFA, ScaranoFR, eds. Pesquisas de longa duração na restinga de Jurubatiba: ecologia, história natural e conservação. São Carlos, Brazil: Editoria Rima, 7797.
  • Scarano FR, Duarte HM, Franco AC, Geßler A, De Mattos EA, Nahm M, Rennenberg H, Zaluar HLT, Lüttge U. 2005. Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE Brazil. I. Performance of three different species of Clusia in an array of plant communities. Trees 19: 497509.
  • Schindler C, Lichtenthaler HK. 1996. Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. Journal of Plant Physiology 148: 399412.
  • Schmitt A, Lee HSJ, Lüttge U. 1988. The response of the C3-CAM tree, Clusia rosea, to light and water stress. Journal of Experimental Botany 39: 15811590.
  • Smith JAC. 1989. Epiphytic bromeliads. In: LüttgeU, ed. Vascular plants as epiphytes: evolution and ecophysiology. Ecological Studies, Vol. 76. Berlin, Heidelberg, New York: Springer, 109138.
  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE. 1979. Crassulacean acid metabolism and diurnal variations of internal CO2 and O2-concentrations in Sedum praealtum DC. Australian Journal of Plant Physiology 6: 557567.
  • Svensson P, Bläsing OE, Westhoff P. 2003. Evolution of C4 phosphoenolpyruvate carboxylase. Archives of Biochemistry and Biophysics 414: 180188.
  • Taybi T, Nimmo HG, Borland AM. 2004. Expression of phosphoenol-pyruvate carboxylase and phosphoenol-pyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism. Plant Physiology 135: 587598.
  • Ting IP, Lord EM, Sternberg L da SL, DeNiro MJ. 1985. Crassulacean acid metabolism in the strangler Clusia rosea Jacq. Science 229: 969971.
  • Tinoco Ojanguren C, Vazquez-Yanez C. 1983. Especies CAM in la selva humeda tropical de Los Tuxtlas, Veracruz. Boletin Sociedad Botanica de Mexico. 45: 150153.
  • Ule E. 1901. Die Vegetation von Cabo Frio an der Küste von Brasilien. Botanische Jahrbücher für Systematik. Pflanzengeschichte und Pflanzengeographie 28: 511528.
  • Vaasen A, Begerow D, Hampp R. 2006. Phosphoenolpyruvate carboxylase (PEPC) genes in C3, CAM and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene. Plant, Cell & Environment . (In press.)
  • Vaasen A. 2005. Verwandtschaftsbeziehungen, Photosynthesemechanismen und Phosphoenolpyruvat-Carboxylase bei der südamerikanischen Pflanzengattung Clusia. PhD thesis. Universität Tübingen, Tübingen, Germany.
  • Vaasen A, Begerow D, Lüttge U, Hampp R. 2002. The genus Clusia L. Molecular evidence for independent evolution of photosynthetic flexibitity. Plant Biology 4: 8693.
  • Vareschi V. 1980. Vegetationsökologie der Tropen. Stuttgart, Germany: Eugen Ulmer.
  • Westhoff P, Gowik U. 2004. Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria. Annals of Botany 93: 1323.
  • Winter K, Aranda J, Holtum JAM. 2005. Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Functional Plant Biology 32: 381388.
  • Winter K, Holtum JAM. 2002. How closely do δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiology 129: 18431851.
  • Winter K, Lesch M, Diaz M. 1990. Changes in xanthophyll-cycle components and in fluorescence yield in leaves of a crassulacean- acid-metabolism plant Clusia rosea Jacq., throughout a 12 hour photoperiod of constant irradiance. Planta 182: 181185.
  • Ziegler H. 1994. Stable isotopes in plant physiology and ecology. Progress in Botany 56: 124.
  • Zotz G, Hietz P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 20672078.
  • Zotz G, Patiño S, Tyree MT. 1997. Water relations and hydraulic architecture of woody hemi-epiphytes. Journal of Experimental Botany 48: 18251833.
  • Zotz G, Winter K. 1994a. Annual carbon balance and nitrogen-use efficiency in tropical C3 and CAM epiphytes. New Phytologist 126: 481492.
  • Zotz G, Winter K. 1994b. A one year study on carbon, water and nutrient relationships in a tropical C3-CAM hemi-epiphyte, Clusia uvitana Pittier. New Phytologist 127: 4560.