SEARCH

SEARCH BY CITATION

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219: 479488.
  • Allen PS. 2003. When and how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158: 19.
  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn de Vries H, Koornneef M. 2003. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164: 711729.
  • Aloresi A, Gestin C, Leydecker M-T, Bedu M, Meyer C, Truong H-N. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell & Environment 28: 500512.
  • Alvarado V, Bradford KJ. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25: 10611069.
  • Alvarado V, Bradford KJ. 2005. Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research 15: 7788.
  • Amritphale D, Yoneyama K, Takeuchi Y, Ramakrishna P, Kusumoto D. 2005. The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber. Journal of Experimental Botany 56: 21732181.
  • Angiosperm Phylogeny Group II. 2003. An updated classification of the angiosperms. Botanical Journal of the Linnean Society 141: 399436.
  • Bailly C. 2004. Active oxygen species and antioxidants in seed biology. Seed Science Research 14: 93107.
  • Bair NB, Meyer SE, Allen PS. 2006. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Science Research 16: 1728.
  • Baskin CC. 2003. Breaking physical dormancy in seeds – focussing on the lens. New Phytologist 158: 227238.
  • Baskin CC, Baskin JM. 1998. Seeds – ecology, biogeography, and evolution of dormancy and germination. San Diego, CA, USA: Academic Press.
  • Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed Science Research 14: 116.
  • Baskin CC, Baskin JM. 2005. Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Science Research 15: 357360.
  • Baskin CC, Baskin JM, Yoshinaga A, Thompson K. 2005. Germination of drupelets in multi-seeded drupes of the shrub Leptecophylla tameiameiae (Ericaceae) from Hawaii: a case for deep physiological dormancy broken by high temperatures. Seed Science Research 15: 349356.
  • Batak I, Devic M, Giba Z, Grubisi D, Poff KL, Konjevic R. 2002. The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Science Research 12: 253259.
  • Batlla D, Benech-Arnold RL. 2005. Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytologist 165: 445452.
  • Batlla D, Benech-Arnold RL. 2006. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Science Research 16: 4759.
  • Batlla D, Kruk BC, Benech-Arnold RL. 2004. Modelling changes in dormancy in weed soil seed banks: Implications for the prediction of weed emergence. In: Benech-ArnoldRL, SanchezRA, eds. Handbook of seed physiology: applications to agriculture. New York, NY, USA: Food Product Press and the Haworth Reference Press, 245270.
  • Bauer MC, Meyer SE, Allen PS. 1998. A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. Journal of Experimental Botany 49: 12351244.
  • Benech-Arnold RL. 2004. Inception, maintenance, and termination of dormancy in grain crops: Physiology, genetics, and environmental control. In: Benech-ArnoldRL, SanchezRA, eds. Handbook of seed physiology: applications to agriculture. New York, NY, USA: Food Product Press and the Haworth Reference Press, 169198.
  • Benech-Arnold RL, Sanchez RA, Forcella F, Kruk BC, Ghersa CM. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67: 105122.
  • Bethke PC, Libourel IGL, Jones RL. 2006. Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany 57: 517526.
  • Bettey M, Finch-Savage WE, King GJ, Lynn JR. 2000. Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytologist 148: 277286.
  • Bewley JD. 1997a. Seed germination and dormancy. Plant Cell 9: 10551066.
  • Bewley JD. 1997b. Breaking down the walls – a role for endo-β-mannanase in release from seed dormancy? Trends in Plant Science 2: 464469.
  • Bewley JD, Black M. 1994. Seeds – physiology of development and germination, 2nd edn. New York, NY, USA: Plenum Press.
  • Blake PS, Taylor JM, Finch-Savage WE. 2002. Identification of abscisic acid, indol-3-acetic acid, jasmonic acid, indole-3-acetonitrile, methyl jasmonate and gibberellins in developing, dormant and stratified seeds of ash (Fraxinus excelsior). Plant Growth Regulation 37: 119125.
  • Blumenthal A, Lerner HR, Werker E, Poljakoff-Mayber A. 1986. Germination preventing mechanisms in Iris seeds. Annals of Botany 58: 551561.
  • Borghetti F, Noda FN, De Sa CM. 2002. Possible involvement of proteasome activity in ethylene-induced germination of dormant sunflower embryos. Brazilian Journal of Plant Physiology 14: 125131.
  • Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P. 2005. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Molecular Biology 57: 593612.
  • Bradford KJ. 1990. A water relations analysis of seed germination rates. Plant Physiology 94: 840849.
  • Bradford KJ. 1995. Water relations in seed germination. In: KigelJ, GaliliG, eds. Seed development and germination. New York, NY, USA: Marcel Dekker, 351396.
  • Bradford KJ. 1996. Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. In: LangGA, ed. Plant dormancy: physiology, biochemistry and molecular biology. Wallingford, Oxon, UK: CAB International, 313339.
  • Bradford KJ. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50: 248260.
  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE. 2006. Gene expression profiles of Arabidopsis Cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant Journal. 46: 805822.
  • Casal JJ, Sanchez RA. 1998. Phytochromes and seed germination. Seed Science Research 8: 317329.
  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR. 2005. The etr1–2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal 42: 3548.
  • Christensen M, Meyer SE, Allen PS. 1996. A hydrothermal time model of seed after-ripening in Bromus tectorum. Seed Science Research 6: 155163.
  • Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijin-DeVries H, Groot SPC, Vreugdenhil D, Koornneef M. 2004. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiology 135: 432443.
  • Cohn MA. 1996. Operational and philosophical decisions in seed dormancy research. Seed Science Research 6: 147153.
  • Corbineau F, Bianco J, Garello G, Come D. 2002. Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiologia Plantarum 114: 313319.
  • Debeaujon I, Koornneef M. 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology 122: 415424.
  • Donohue K. 2005. Seeds and seasons: interpreting germination timing in the field. Seed Science Research 15: 175187.
  • Elortza F, Nuhse TS, Foster LJ, Stensballe A, Peck SC, Jensen ON. 2003. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Molecular and Cellular Proteomics 2: 12611270.
  • Fenner M, Thompson K. 2005. The ecology of seeds. Cambridge, UK: Cambridge University Press.
  • Fennimore SA, Foley ME. 1998. Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. Journal of Experimental Botany 49: 8994.
  • Finch-Savage WE. 2004. The use of population-based threshold models to describe and predict the effects of seedbed environment on germination and seedling emergence of crops. In: Benech-ArnoldRL, SánchezRL, eds. Seed physiology: applications to agriculture. New York, NY, USA: Haworth Press, 5195.
  • Finch-Savage WE, Bergervoet JHW, Bino RJ, Clay HA, Groot SPC. 1998. Nuclear replication activity during seed-dormancy breakage and germination in the three tree species: Norway maple (Acer platanoides L.), sycamore (Acer pseudoplatanus L.) and cherry (Prunus avium L.). Annals of Botany 81: 519526.
  • Finch-Savage WE, Clay HA. 1997. The influence of embryo restraint during dormancy loss and germination of Fraxinus excelsior seeds. In: EllisRH, BlackM, MurdochAJ, HongTD, eds. Basic and applied aspects of seed biology. Dordrecht, the Netherlands: Kluwer Academic Publishers, 245253.
  • Finch-Savage WE, Côme D, Lynn JR, Corbineau F. 2005a. Sensitivity of Brassica oleracea seed germination to hypoxia: a QTL analysis. Plant Science 169: 753759.
  • Finch-Savage WE, Phelps K. 1993. Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. Journal of Experimental Botany 44: 407414.
  • Finch-Savage WE, Rowse HR, Dent KC. 2005b. Development of combined imbibition and hydrothermal threshold models to simulate maize (Zea mays) and chickpea (Cicer arietinum) seed germination in variable environments. New Phytologist 165: 825838.
  • Finkelstein RR. 2004. The role of hormones during seed development and germination. In: DaviesPJ, ed. Plant hormones – biosynthesis, signal transduction, action!. Dordrecht, the Netherlands: Kluwer Academic Publishers, 513537.
  • Finkelstein RR, Gampala SSL, Rock CD. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15S45.
  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 2004. A compound from smoke that promotes seed germination. Science 305: 977.
  • Forbis TA, Floyd SK, DeQueiroz A. 2002. The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution 56: 21122125.
  • Garcia-Huidobro J, Monteith JL, Squire GR. 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S.H.). 1. Constant temperature. Journal of Experimental Botany 33: 288296.
  • Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210: 279285.
  • Groot SPC, Karssen CM. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171: 525531.
  • Groot SPC, Karssen CM. 1992. Dormancy and germination of abscisic acid-deficient tomato seeds. Plant Physiology 99: 952958.
  • Gu X-Y, Kianian SF, Foley ME. 2004. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166: 15031516.
  • Gubler F, Millar AA, Jacobsen JV. 2005. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8: 183187.
  • Gummerson RJ. 1986. The effect of constant temperatures and osmotic potential on the germination of sugar beet. Journal of Experimental Botany 37: 729958.
  • Gutterman Y, Gendler T. 2005. Annual rhythm of germination of seeds of Mesembryanthemum nodiflorum 32 years after collection. Seed Science Research 15: 249253.
  • Hall AE, Fiebig A, Preuss D. 2002. Beyond the Arabidopsis genome: Opportunities for comparative genomics. Plant Physiology 129: 14391447.
  • Hallett BP, Bewley JD. 2002. Membranes and seed dormancy: beyond the anaesthetic hypothesis. Seed Science Research 12: 6982.
  • Hay FR, Mead A, Manger K, Wilson FJ. 2003. One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds. Journal of Experimental Botany 54: 9931011.
  • Hepher A, Roberts JA. 1985. The control of seed germination in Trollius ledebouri: The breaking of dormancy. Planta 166: 314320.
  • Hilhorst HWM. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5: 6173.
  • Hilhorst HWM. 1998. The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Science Research 8: 7790.
  • Huarte R, Benech-Arnold RL. 2005. Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Science Research 15: 8997.
  • Ikuma H, Thimann KV. 1963. The role of the seed-coats in germination of photosensitive lettuce seeds. Plant and Cell Physiology 4: 169185.
  • Jacobsen JV, Pressman E. 1979. A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta 144: 241248.
  • Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ. 2002. Plant systematics: a phylogenetic approach. Sunderland, MA, USA: Sinauer Associates, Inc., 217480.
  • Junttila O. 1973. The mechanism of low temperature dormancy in mature seeds of Syringa species. Plant Physiology 29: 256263.
  • Karssen CM. 1976. Uptake and effect of abscisic acid during induction and progress of radicle growth in seeds of Chenopodium album. Physiologia Plantarum 36: 259263.
  • Karssen CM, Haigh A, Van Der Toorn P, Weges R. 1989. Physiological mechanisms involved in seed priming. In: TaylorsonRB, ed. Recent advances in the development and germination of seeds. New York, NY, USA: Plenum Press, 269280.
  • Karssen CM, Laçka E. 1986. A revision of the hormone balance theory of seed dormancy: Studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. In: BoppM, ed. Plant growth substances 1985. Berlin, Germany: Springer-Verlag, 315323.
  • Koch M, Al-Shehbaz IA, Mummenhoff K. 2003. Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Annals of the Missouri Botanical Garden 90: 151171.
  • Koornneef M, Alonso-Blanco C, Vreugdenhil D. 2004. Natrually occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55: 141172.
  • Koornneef M, Bentsink L, Hilhorst H. 2002. Seed dormancy and germination. Current Opinion in Plant Biology 5: 3336.
  • Krock B, Schmidt S, Hertweck C, Baldwin IT. 2002. Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Science Research 12: 239252.
  • Kucera B, Cohn MA, Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15: 281307.
  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23: 16471656.
  • Le Page-Degivry MT, Bianco J, Barthe P, Garello G. 1996. Change in hormone sensitivity in relation to the onset and breaking of sunflower embryo dormancy. In: LangGA, ed. Plant dormancy: physiology, biochemistry and molecular biology. Wallingford, UK: CAB International, 221231.
  • Le Page-Degivry MT, Garello G. 1992. In situ abscisic acid synthesis: a requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiology 98: 13861390.
  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant Journal 45: 309319.
  • Leubner-Metzger G. 2001. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213: 758763.
  • Leubner-Metzger G. 2002. Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215: 959968.
  • Leubner-Metzger G. 2003. Functions and regulation of β-1,3-glucanase during seed germination, dormancy release and after-ripening. Seed Science Research 13: 1734.
  • Leubner-Metzger G. 2006. Hormonal interactions during seed dormancy release and germination. In: BasraA, ed. Handbook of seed science and technology. Binghamton, NY, USA: The Haworth Press, 303342.
  • Leubner-Metzger G. 2005. β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant Journal 41: 133145.
  • Leubner-Metzger G, Meins F Jr. 2001. Antisense-transformation reveals novel roles for class I β-1,3-glucanase in tobacco seed after-ripening and photodormancy. Journal of Experimental Botany 52: 17531759.
  • Li BL, Foley ME. 1997. Genetic and molecular control of seed dormancy. Trends in Plant Science 2: 384389.
  • Liptay A, Schopfer P. 1983. Effect of water stress, seed coat restraint, and abscisic acid upon different germination capabilities of two tomato lines at low temperature. Plant Physiology 73: 935938.
  • Liu P-P, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H. 2005a. Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant Journal 41: 936944.
  • Liu P-P, Koizuka N, Martin RC, Nonogaki H. 2005b. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant Journal 44: 960971.
  • Manz B, Müller K, Kucera B, Volke F, Leubner-Metzger G. 2005. Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiology 138: 15381551.
  • Martin AC. 1946. The comparative internal morphology of seeds. American Midland Naturalist 36: 513660.
  • Meyer SE, Debaene-Gill SB, Allen PS. 2000. Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides. Seed Science Research 10: 213223.
  • Mohapatra SC, Johnson WH. 1978. Development of the tobacco seedling. 1. Relationship between moisture uptake and light sensitivity during seed germination in a flue-cured variety. Tobacco Research 4: 4149.
  • Del Monte JP, Tarquis AM. 1997. The role of temperature in the seed germination of two species of the Solanum nigrum complex. Journal of Experimental Botany 48: 20872093.
  • Müller K, Tintelnot S, Leubner-Metzger G. 2006. Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant and Cell Physiology. doi: 10.1093/pcp/pcj059.
  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant Journal 41: 697709.
  • Nambara E, Marion-Poll A. 2003. ABA action and interactions in seeds. Trends in Plant Science 8: 213217.
  • Nguyen H, Brown RC, Lemmon BE. 2000. The specialized chalazal endosperm in Arabidopsis thaliana and Lepidium virginicum (Brassicaceae). Protoplasma 212: 99110.
  • Ni B-R, Bradford KJ. 1992. Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiology 98: 10571068.
  • Ni BR, Bradford KJ. 1993. Germination and dormancy of abscisic acid-deficient and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds – Sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiology 101: 607617.
  • Nikolaeva MG. 1967. [Physiology of deep dormancy in seeds.] Leningrad, Russia: Izdatel'stvo ‘Nauka’ (in Russian). [Translated from Russian by Z. Shapiro (1969), National Science Foundation, Washington, DC, USA: 219.]
  • Nikolaeva MG. 2004. On criteria to use in studies of seed evolution. Seed Science Research 14: 315320.
  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. 2003. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 15911604.
  • Oh E, Kim J, Park E, Kim J-I, Kang C, Choi G. 2004. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16: 30453058.
  • Penfield S, Josse E-M, Kannangara R, Gilday AD, Halliday KJ, Graham IA. 2005. Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biology 15: 19982006.
  • Petruzzelli L, Müller K, Hermann K, Leubner-Metzger G. 2003. Distinct expression patterns of β-1,3-glucanases and chitinases during the germination of Solanaceous seeds. Seed Science Research 13: 139153.
  • Pons TL. 2000. Seed responses to light. In: FennerM, ed. Seeds – the ecology of regeneration in plant communities. Wallingford, UK: CAB International, 237260.
  • Pritchard SL, Charlton WL, Baker A, Graham IA. 2002. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant Journal 31: 639647.
  • Probert RJ. 2000. The role of temperature in the regulation of seed dormancy and germination. In: FennerM, ed. Seeds: the ecology of regeneration in plant communities. Wallingford, UK: CAB International, 261292.
  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. 2004. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology 134: 15981613.
  • Ramakrishna P, Amrithhale D. 2005. The perisperm-endosperm envelope in Cucumis: Structure, proton diffusion and cell wall hydrolysing activity. Annals of Botany 96: 769778.
  • Rinne PLH, Kaikuranta PM, Van Der Schoot C. 2001. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant Journal 26: 249264.
  • Sanchez RA, Mella RA. 2004. The exit from dormancy and the induction of germination: Physiological and molecular aspects. In: Benech-ArnoldRL, SanchezRA, eds. Handbook of seed physiology: applications to agriculture. New York, NY, USA: Food Product Press and the Haworth Reference Press, 221243.
  • Schopfer P, Plachy C. 1984. Control of seed germination by abscisic acid. II. Effect on embryo water uptake in Brassica napus L. Plant Physiology 76: 155160.
  • Schopfer P, Plachy C, Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology 125: 15911602.
  • Da Silva EAA, Toorop PE, Nijsse J, Bewley JD, Hilhorst HWM. 2005. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. Journal of Experimental Botany 413: 10291038.
  • Da Silva EAA, Toorop PE, Van Aelst AC, Hilhorst HWM. 2004. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220: 251261.
  • Skoda B, Malek L. 1992. Dry pea seed proteasome. Plant Physiology 99: 15151519.
  • Soltis DE, Soltis PS. 2003. The role of phylogenetics in comparative genetics. Plant Physiology 132: 17901800.
  • Steadman KJ, Crawford AD, Gallagher RS. 2003. Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Functional Plant Biology 30: 345352.
  • Steadman KJ, Pritchard HW. 2004. Germination in Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to temperature-dependent reduction in base temperature (Tb). New Phytologist 161: 415425.
  • Steinbach HS, Benech-Arnold R, Sanchez RA. 1997. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology 113: 149154.
  • Stevens PF. 2005. Angiosperm phylogeny website, version 6. http://www.mobot.org/MOBOT/research/ABweb/
  • Tao K-L, Khan AA. 1979. Changes in the strength of lettuce endosperm during germination. Plant Physiology 63: 126128.
  • Thompson K. 2000. The functional ecology of soil seed banks. In: FennerM, ed. Seeds: the ecology of regeneration in plant communities. Wallingford, UK: CAB International, 215235.
  • Thompson K, Ceriani RM, Bakker JP, Bekker RM. 2003. Are seed dormancy and persistence in soil related? Seed Science Research 13: 97100.
  • Toorop PE, Van Aelst AC, Hilhorst HWM. 2000. The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. Journal of Experimental Botany 51: 13711379.
  • Tsiantis M. 2006. Plant development: Multiple strategies for breaking seed dormancy. Current Biology 16: R25R27.
  • Vleeshouwers LM, Bouwmeester HJ. 2001. A simulation model for seasonal changes in dormancy and germination of weed seeds. Seed Science Research 11: 7792.
  • Vleeshouwers LM, Bouwmeester HJ, Karssen CM. 1995. Redefining seed dormancy: an attempt to integrate physiology and ecology. Journal of Ecology 83: 10311037.
  • Walck JL, Baskin JM, Baskin CC, Hidayati S. 2005. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research 15: 189196.
  • Wang M, Heimovaara-Dijkstra S, Van Duijn B. 1995. Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta 195: 586592.
  • Watkins JT, Cantliffe DJ. 1983. Mechanical resistance of the seed coat and endosperm during germination of Capsicum annuum at low temperatures. Plant Physiology 72: 146150.
  • Welbaum GE, Bradford KJ, Yim K-O, Booth DT, Oluoch MO. 1998. Biophysical, physiogical and biochemical processes regulating seed germination. Seed Science Research 8: 161172.
  • White CN, Proebsting WM, Hedden P, Rivin CJ. 2000. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology 122: 10811088.
  • White CN, Rivin CJ. 2000. Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. Plant Physiology 122: 10891097.
  • Wu C-T, Leubner-Metzger G, Meins F Jr, Bradford KJ. 2000. Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology 126: 12991313.
  • Yamaguchi S, Kamiya Y. 2002. Gibberellins and light-stimulated seed germination. Journal of Plant Growth Regulation 20: 369376.
  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16: 367378.
  • Yim KO, Bradford KJ. 1998. Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiology 118: 8390.