SEARCH

SEARCH BY CITATION

Keywords:

  • Arabidopsis thaliana;
  • elevated CO2;
  • leaf ultrastructure;
  • mineral nutrition;
  • plant hormones;
  • stomatal characters;
  • transpiration rate

Summary

  • • 
    Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 µmol mol−1, respectively) were examined for physiological, biochemical and structural changes.
  • • 
    Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA).
  • • 
    Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined.
  • • 
    These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.