SEARCH

SEARCH BY CITATION

References

  • Acosta C, Pérez-Amador MA, Carbonell J, Granell A. 2005. The two ways to produce putrescine in tomato are cell-specific during normal development. Plant Science 168: 10531057.
  • Bagni N, Torrigiani P. 1992. Polyamines: a new class of growth substances. In: KarssenCM Van Loon LC Vreugdenhil D, eds. Progress in plant growth regulation. Dordrecht, the Netherlands: Kluwer Academic Publishers, 264275.
  • Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123: 979986.
  • Bassett CL, Artlip TS, Callahan AM. 2002. Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215: 679688.
  • Biasi R, Costa G, Bagni N. 1991. Polyamine metabolism as related to fruit set and growth. Plant Physiology and Biochemistry 29: 497506.
  • Bonghi C, Ferrarese L, Ruperti B, Tonutti P, Ramina A. 1998. Endo-β-1,4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene. Physiologia Plantarum 102: 346352.
  • Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P. 2002. Differential expression of two lipid transfer protein genes in reproductive organs of peach (Prunus persica L. Batsch). Plant Science 163: 9931000.
  • Bregoli AM, Scaramagli S, Costa G, Sabatini E, Ziosi V, Biondi S, Torrigiani P. 2002. Peach (Prunus persica L.) fruit ripening: aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiologia Plantarum 114: 472481.
  • Bregoli AM, Ziosi V, Biondi S, Bonghi C, Costa G, Torrigiani P. 2006. A comparison between intact fruit and fruit explants to study the effect of polyamines and aminoethoxyvinylglycine (AVG) on ripening in peach and nectarine (Prunus persica L. Batch). Postharvest Biology and Technology. (In press).
  • Bregoli AM, Ziosi V, Biondi S, Rasori A, Ciccioni M, Costa G, Torrigiani P. 2005. Postharvest 1-methylcyclopropene application in ripening control of ‘Stark Red Gold’ nectarines: temperature-dependent effects on ethylene production and biosynthetic gene expression, fruit quality, and polyamine levels. Postharvest Biology and Technology 37: 111121.
  • Capell T, Bassie L, Christou P. 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences, USA 101: 99099914.
  • Cohen SS. 1998. A guide to the polyamines. New York: Oxford University Press.
  • Doyle A, Doyle G. 1990. Isolation of plant DNA from fresh tissues. Focus 12: 1315.
  • Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. Plant Cell 16: S170S180.
  • Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ. 2002. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. Journal of Biological Chemistry 277: 4413144139.
  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y. 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO Journal 19: 42484256.
  • Hao Y-J, Kitashiba H, Honda C, Nada K, Moriguchi T. 2005a. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. Journal of Experimental Botany 56: 11051115.
  • Hao Y-J, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T. 2005b. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene 350: 4150.
  • Hua J, Meyerowitz EM. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261271.
  • Huai Q, Xia Y, Chen Y, Callahan B, Li N, Ke H. 2001. Crystal structures of 1-aminocyclopropane-1-carboxylaste (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. Journal of Biological Chemistry 276: 3821038216.
  • Hummel I, Bourdais G, Gouesbet G, Couée I, Malmberg RL, El Amrani A. 2004. Differential gene expression of ARGININE DECARBOXYLASE ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytologist 163: 519531.
  • King GA, Henderson KG, Lill RE. 1987. Growth and anatomical and ultrastructural studies of nectarine fruit wall development. Botanical Gazette 148: 433455.
  • Lashbrook CC, Tieman DM, Klee HJ. 1998. Differential regulation of the tomato ETR gene family throughout plant development. Plant Journal 15: 243252.
  • Malmberg RL, Smith KE, Bell E, Cellino ML. 1992. Arginine decarboxylase of oats is clipped from a precursor into 2-polypeptides found in the soluble enzyme. Plant Physiology 100: 146152.
  • Masia A, Zanchin A, Rascio N, Ramina A. 1992. Some biochemial and ultrastructural aspects of peach fruit development. Journal of the American Society of Horticultural Sciences 117: 808815.
  • Mathooko FM, Tsunashima Y, Owino WZO, Kubo Y, Inaba A. 2001. Regulation of genes encoding ethylene biosynthesis enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene. Postharvest Biology and Technology 21: 265281.
  • Mayer JM, Michael AJ. 2003. Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation. Journal of Biochemistry 134: 765772.
  • Michael AJ, Furze JM, Rhodes MJC, Burtin D. 1996. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochemical Journal 314: 241248.
  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiology 118: 12951305.
  • Nickrent DL, Soltis DE. 1995. A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Annals of the Missouri Botanical Garden 82: 208234.
  • Paksasorn A, Hayasaka T, Matsui H, Ohara H, Hirata N. 1995. Relationship of polyamine content to ACC content and ethylene evolution in Japanese apricot fruit. Journal of the Japanese Society for Horticultural Science 63: 761766.
  • Perez-Amador MA, Leon J, Green PJ, Carbonell J. 2002. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiology 130: 14541463.
  • Petkou JT, Pritsa TS, Sfakiotakis EM. 2004. Effects of polyamines on ethylene production, respiration and ripening of kiwifruit. Journal of Horticultural Science & Biotechnology 79: 977980.
  • Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A. 2002. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. Journal of Experimental Botany 53: 23332339.
  • Roy M, Wu R. 2001. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science 160: 869875.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring. Harbor Laboratory Press.
  • Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H. 1999. Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiology 120: 321330.
  • Scaramagli S, Biondi S, Capitani F, Gerola P, Altamura MM, Torrigiani P. 1999. Polyamine conjugate levels and ethylene biosynthesis: Inverse relationship with vegetative bud formation in tobacco thin layers. Physiologia Plantarum 105: 367376.
  • Tieman DM, Taylor MG, Ciardi JA, Klee HJ. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences, USA 97: 56635668.
  • Torrigiani P, Bregoli AM, Ziosi V, Scaramagli S, Ciriaci T, Rasori A, Biondi S, Costa G. 2004. Pre-harvest polyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in Stark Red Gold nectarines (Prunus persica L. Batsch). Postharvest Biology and Technology 33: 293308.
  • Torrigiani P, Scaramagli S, Castiglione S, Altamura MM, Biondi S. 2003. Downregulation of ethylene production and biosynthetic gene expression is associated to changes in putrescine metabolism in shoot-forming tobacco thin layers. Plant Science 164: 10871094.
  • Torrigiani P, Serafini-Fracassini D, Bagni N. 1987. Polyamine biosynthesis and effect of dicyclohexylamine during the cell cycle of Helianthus tuberosus tuber. Plant Physiology 84: 148152.
  • Urano K, Hobo T, Shinozaki K. 2005. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Letters 579: 15571564.
  • Urano K, Yoshiba Y, Nanjo T. 2004. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications 313: 369375.
  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K. 2003. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant, Cell & Environment 26: 19171926.
  • Watson MW, Malmberg RL. 1996. Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiology 111: 10771083.
  • Yu YB, Yang SF. 1979. Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiology 64: 10741107.
  • Yau CP, Wang L, Yu M, Zee SY, Yip WK. 2004. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. Journal of Experimental Botany 55: 547556.
  • Zanchin A, Bonghi C, Casadoro G, Ramina A, Rascio N. 1994. Cell enlargement and cell separation during peach fruit development. International Journal of Plant Sciences 155: 4956.
  • Ziosi V, Scaramagli S, Bregoli AM, Biondi S, Torrigiani P. 2003. Peach (Prunus persica L.) fruit growth and ripening: transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp. Journal of Plant Physiology 160: 11091115.