SEARCH

SEARCH BY CITATION

References

  • Alm J, Talanov A, Saarnio S, Silvola J, Ikkonen E, Aaltonen H, Nykanen H, Martikainen PJ. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110: 423431.
  • Alm J, Schulman L, Walden J, Nykanen H, Pertti J, Martikainen PJ, Silvola J. 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80: 161174.
  • Armentano TV, Menges ES. 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. Journal of Ecology 74: 755774.
  • Aurela M, Laurila T, Tuovinen JP. 2001. Seasonal CO2 balances of a subarctic mire. Journal of Geophysical Research Atmospheres 106: 16231637.
  • Aurela M, Laurila T, Tuovinen JP. 2002. Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research 107: 111.
  • Belkovsky VI, Reshetnik AP. 1981. Dynamics of CO2 liberation from peat soil under various uses. Soviet Soil Science 6: 5761.
  • Bellisario LM, Bubier JL, Moore TR, Chanton JP. 1999. Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles 13: 8191.
  • Bragg OM, Hulme PD, Ingram HAP, Robertson RA. 1992. Peatland ecosystems and man: an impact assessment. Dundee, UK: Department of Biological sciences, University of Dundee.
  • Bubier J, Crill PM, Mosedale A, Frolking S, Linder E. 2003. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biogeochemical Cycles 17: 115.
  • Burrows E, Bubier J, Mosedale A, Cobb G, Crill P. 2005. Net ecosystem exchange of carbon dioxide in a temperate poor fen: a comparison of automated and manual chamber techniques. Biogeochemistry 76: 2145.
  • Buttler A, Dinel H, Lévesque PME. 1994. Effects of physical, chemical and botanical characteristics of peat on carbon gas fluxes. Soil Science 158: 365374.
  • Buttler A, Grosvernier P, Matthey Y. 1998. Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. Journal of Applied Ecology 35: 800810.
  • Chapman SJ, Buttler A, Francez AJ, Laggoun-Défarge F, Vasander H, Schloter M, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell EAD. 2003. Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology 1: 525532.
  • Clymo RS. 1984. Sphagnum-dominated peat bog: a naturally acid ecosystem. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 305: 487499.
  • Clymo RS, Hayward PM. 1982. The ecology of Sphagnum. In: SmithAJE, ed. Bryophyte ecology. London, UK: Chapman & Hall, 229289.
  • Coulson JC, Butterfield J. 1978. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. The Journal of Ecology 66: 631650.
  • Farquhar GD, Von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 7890.
  • Frolking S, Roulet N, Moore T, Lafleur P, Bubier JL, Crill PM. 2002. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles 16: 121.
  • Gerdol R, Bonora A, Gualandri R, Pancaldi S. 1996. CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration. Canadian Journal of Botany 74: 726734.
  • Girard M, Lavoie C, Theriault M. 2002. The regeneration of a highly disturbed ecosystem: a mined peatland in southern Quebec. Ecosystems 5: 274288.
  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182195.
  • Grosvernier P, Matthey Y, Buttler A. 1995. Microclimate and physical properties of peat: new clues to the understanding of bog restoration processes. In: WheelerBD, ShawSC, FotjWJ, RobertsonRA, eds. Restoration of temperate wetlands. London, UK: John Wiley & Sons, 435450.
  • Grosvernier P, Matthey Y, Buttler A. 1997. Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. Journal of Applied Ecology 34: 471483.
  • Haapanala S, Rinne J, Pystynen KH, Hellen H, Hakola H, Riutta T. 2006. Measurements of hydrocarbon emissions from a boreal fen using the REA technique. Biogeosciences 3: 103112.
  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K, Giblin A, Laundre JA, Stanley A. 2000. Plant carbon–nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81: 453469.
  • June T, Evans JR, Farquhar GD. 2004. A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Functional Plant Biology 31: 275283.
  • Komulainen VM, Tuittila ES, Vasander H, Laine J. 1999. Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology 36: 634648.
  • Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE. 1993. Development of Sphagnum-dominated peatlands in boreal continental Canada. Canadian Journal of Botany 71: 1022.
  • Lafleur PM, Roulet NT, Admiral SW. 2001. Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research Atmospheres 106: 30713081.
  • Lafleur P, Roulet N, Bubier J, Frolking S, Moore PD. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles 17: 513.
  • Lafleur PM, Moore TR, Roulet NT, Frolking S. 2005. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8: 619629.
  • Laurila T, Soegaard H, Lloyd CR, Aurela M, Tuovinen JP, Nordstroem C. 2001. Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theoretical and Applied Climatology 70: 183201.
  • McKenzie C, Schiff S, Aravena R, Kelly C, St Louis V. 1998. Effect of temperature on production of CH4 and CO2 from peat in a natural and flooded boreal forest wetland. Climatic Change 40: 247266.
  • McNeil P, Waddington JM. 2003. Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. Journal of Applied Ecology 40: 354367.
  • Moore PD. 2002. The future of cool temperate bogs. Environmental Conservation 29: 320.
  • Moore TR, Dalva M. 1993. The influence of temperature and water table level position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science 44: 651664.
  • Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles 12: 5369.
  • Oechel WC, Hastings SJ, Vourlitis GL, Jenkins M, Riechers G, Grulke N. 1993. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520523.
  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D. 2000. Acclimatization of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406: 978980.
  • Öquist MG, Svensson BH. 2002. Vascular plants as regulators of methane emissions from a subarctic mire ecosystem. Journal of Geophysical Research 107: 110.
  • Petrone RM, Waddington JM, Price JS. 2001. Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrological Processes 15: 28392845.
  • Petrone RM, Waddington JM, Price J. 2003. Ecosystem-scale flux of CO2 from a restored vacuum harvested peatland. Wetlands Ecology and Management 11: 419432.
  • Price JS. 1996. Hydrology and microclimate of a partly restored cutover bog. Québec. Hydrological Processes 10: 12631272.
  • Rochefort L. 2000. New frontiers in bryology and lichenology –Sphagnum– a keystone genus in habitat restoration. Bryologist 103: 503508.
  • Rydin H, Mcdonald JS. 1985. Tolerance of Sphagnum to water level. Journal of Bryology 13: 571578.
  • Schipperges B, Rydin H. 1998. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytologist 140: 677684.
  • Silvola J. 1990. Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Holarctic Ecology 13: 224228.
  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84: 219228.
  • Succow M, Jeschke L. 1986. Moore in der Landschaft: Entstehung, Haushalt, Lebewelt, Verbreitung, Nutzung und Erhaltung der Moore. Frankfurt/Main.
  • Thormann MN, Szumigalski AR. 1999. Aboveground peat and carbon accumulation potentials along a bog–fen–marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 19: 305317.
  • Titus JE, Wagner DJ. 1984. Carbon balance for two Sphagnum mosses: water balance resolves a physiological paradox. Ecology 65: 17651774.
  • Titus JE, Wagner DJ, Stephens MD. 1983. Contrasting water relations of photosynthesis for two Sphagnum mosses. Ecology 64: 11091115.
  • Tuittila ES, Komulainen VM, Vasander H, Laine J. 1999. Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120: 563574.
  • Tuittila ES, Rita H, Vasander H, Laine J. 2000. Vegetation patterns around Eriophorum vaginatum L. tussocks in a cut-away peatland in southern Finland. Canadian Journal of Botany 78: 4758.
  • Tuittila ES, Vasander H, Laine J. 2004. Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration Ecology 12: 483493.
  • Waddington JM, Rotenberg PA, Warren FJ. 2001. Peat CO2 production in a natural and cutover peatland. Implications for Restoration. Biogeochemistry 54: 115130.
  • Waddington JM, Warner B-G, Kennedy GW. 2002. Cutover peatlands: a persistent source of atmospheric CO2. Global Biogeochemical Cycles 16: 17.