SEARCH

SEARCH BY CITATION

References

  • Armstrong W. 1979. Aeration in higher plants. In: WoolhouseHWW, ed. Advances in botanical research, Vol. 7. London, UK: Academic Press, 225332.
  • Armstrong J, Armstrong W. 1988. Phragmites australis: a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytologist 108: 373382.
  • Armstrong J, Armstrong W. 1990. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytologist 114: 121128.
  • Armstrong J, Armstrong W. 1999. Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytologist 142: 201218.
  • Armstrong J, Armstrong W. 2001a. Rice and Phragmites: effects of organic acids on growth, root permeability and radial oxygen loss to the rhizosphere. American Journal of Botany 88: 13591370.
  • Armstrong J, Armstrong W. 2001b. An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Botany 69: 251268.
  • Armstrong J, Armstrong W. 2005. Rice: sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany 96: 625638.
  • Armstrong W, Boatman DJ. 1967. Some field observations relating the growth of bog plants to conditions of soil aeration. Journal of Ecology 55: 101110.
  • Armstrong J, Armstrong W, Beckett PM. 1992. Phragmites australis: Venturi- and humidity-induced convections enhance rhizome aeration and rhizosphere oxidation. New Phytologist 120: 197207.
  • Armstrong J, Afreen-Zobayed F, Armstrong W. 1996a. Phragmites die-back: sulphide- and acetic acid-induced bud and root death, lignifications, and blockages with the aeration and vascular systems. New Phytologist 134: 601614.
  • Armstrong J, Armstrong W, Armstrong IB, Pittaway GR. 1996b. Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquatic Botany 54: 211216.
  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A. 1996c. Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany 154: 177197.
  • Armstrong J, Armstrong W, Van der Putten WH. 1996d. Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist 133: 399414.
  • Armstrong J, Afreen-Zobayed F, Blythe S, Armstrong W. 1999. Phragmites australis: effects of shoot submergence on seedling growth and survival and radial oxygen loss from roots. Aquatic Botany 64: 275289.
  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM. 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Annals of Botany 86: 687703.
  • Begg CBM, Kirk GJD, Mackenzie AF, Neue H-U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist 128: 469477.
  • Bendix M, Tornbjerg T, Brix H. 1994. Internal gas transport in Typha latifolia, L. and Typha angustifolia, L. 1. Humidity-induced pressurisation and convective throughflow. Aquatic Botany 49: 7590.
  • Brändle R. 1991. Flooding resistance of rhizomatous amphibious plants. In: JacksonMB, DaviesDD, LambersH, eds. Plant life under oxygen stress. The Hague, the Netherlands: SPB Academic Publishing, 3546.
  • Brix H, Sorrell BK, Orr PT. 1992. Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology and Oceanography 37: 14201433.
  • Cíková H, Brix H, Kopecky J, Lukavská J. 1999. Organic acids in sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquatic Botany 64: 303316.
  • Colmer TD. 2002. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice (Oryza sativa L.). Annals of Botany 91: 301309.
  • Colmer TD. 2003. Long distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell & Environment 26: 1736.
  • Colmer TD, Gibbered MR, Wiengweera A, Tinh TK. 1998. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany 49: 14311436.
  • Crawford RMM, Brandle R. 1987. Rhizome anoxia tolerance and habitat specialization in wetland plants. In: CrawfordRMM, ed. Amphibious and intertidal plants. British Ecological Society Special Symposium 5. Oxford, UK: Blackwell, 303320.
  • Dacey JWA. 1981. Pressurised ventilation in the yellow water lily. Ecology 62: 11371147.
  • De Simone O, Haase K, Muller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W. 2003. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiology 132: 206217.
  • Dykjová D, Hradecka D. 1976. Production ecology of Phragmites communis. 1. Relations of two ecotypes to the microclimate and nutrient conditions of habitat. Folia Geobotanica et Phytotaxonomica 11: 2361.
  • Enstone DE, Peterson CA. 2005. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant, Cell & Environment 28: 444455.
  • Evans DE. 2004. Aerenchyma formation (Tansley Review). New Phytologist 161: 3550.
  • Fürtig K, Rüegsegger A, Brunhold C, Brändle R. 1996. Sulphide utilisation and injuries in hypoxic roots and rhizomes of Common Reed (Phragmites australis). Folia Geobotanica et Phytotaxonomica 31: 143151.
  • Gaynard TJ, Armstrong W. 1982. Some aspects of internal plant aeration in amphibious habitats. In: CrawfordRMM, ed. Amphibious and intertidal plants. British Ecological Society Special Symposium 5. Oxford, UK: Blackwell, 303320.
  • Granéli W, Weisner SEB, Sytsma MD. 1992. Rhizome dynamics and resource storage in Phragmites australis. Wetlands Ecology and Management 1: 239247.
  • Gurr E. 1965. The rational use of dyes in biology. London: Leonard Hill.
  • Haslam SM. 1969. The development and emergence of buds in Phragmites communis Trin. Annals of Botany 33: 289301.
  • Hellings SE, Gallagher JL. 1992. The effects of salinity and flooding on Phragmites australis. Journal of Applied Ecology 29: 4149.
  • Jackson MB, Armstrong W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1: 274287.
  • Jensen SI, Kühl M, Glud RN, Jørgensen LB, Priemé A. 2005. Oxic microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progress Series 293: 4958.
  • Kirk GJD, Bajita JB. 1995. Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytologist 131: 129137.
  • Kovacs M, Turcsanyi G, Tuba Z, Wolcsanszky SE, Vasarhelyi T, Dely-Draskovits A, Toth S, Koltay A, Kaszab L, Szoke P, Janko B. 1989. The decay of reed in Hungarian lakes. In: JSalanki, SHerodek, eds. Conservation and management of lakes. Symposia. Biologica Hungarica No. 38. Budapest: Akademiai Kiado, 461471.
  • Lee RW, Kraus DW, Doeller JE. 1999. Oxidation of sulfide by Spartina alterniflora roots. Limnology and Oceanography 44: 11551159.
  • Mendelssohn IA, Postek MT. 1982. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. American Journal of Botany 69: 904912.
  • Mevi-Schutz J, Grosse W. 1988. A two way gas transport system in Nelumbo nucifera. Plant, Cell & Environment 11: 2734.
  • Pedersen O, Binzer T, Borum J. 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell & Environment 27: 595602.
  • Pedersen O, Vos H, Colmer TD. 2006. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata. Plant, Cell & Environment 29: 13881399.
  • Sorrell BK, Boon PI. 1994. Convective gas flow in Eleocharis sphacelata R. Br. methane transport and release from wetlands. Aquatic Botany 47: 197212.
  • Sorrell BK, Mendelssohn IA, McKee KL, Woods RA. 2000. Ecophysiology of wetland plant roots: a modelling comparison of aeration in relation to species distribution. Annals of Botany 86: 675686.
  • Soukup A, Vorubová O, Cíková H. 2002. Development of anatomical structure of roots of Phragmites australis. New Phytologist 153: 277287.
  • Vretare V, Weisner SEB. 2000. Influence of pressurised ventilation on performance of an emergent macrophyte (Phragmites australis). Journal of Ecology 88: 978987.
  • Vretare Strand V, Weisner SEB. 2002. Interactive effects of pressurised ventilation, water depth and substrate conditions on Phragmites australis. Oecologia 131: 490497.
  • Waters I, Armstrong W, Thomson CJ, Setter TL, Adkins S, Gibbs J, Greenway H. 1989. Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytologist. 113: 439451.
  • Weber M, Brändle R. 1996. Some aspects of the extreme anoxia tolerance of the sweet flag, Acorus calamus L. Folia Geobotanica et Phytotaxonomica 31: 3746.