SEARCH

SEARCH BY CITATION

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610615.
  • Aeschbacher R. 1994. The genetic and molecular basis of root development. Annual Review of Plant Physiology and Plant Molecular Biology 45: 2545.
  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824827.
  • Al-Karaki G. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 5154.
  • Auge RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 342.
  • Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-L, Chiou T-J. 2006. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology 141: 10001011.
  • Bailey PHJ, Currey JD, Fitter AH. 2002. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. Journal of Experimental Botany 53: 333340.
  • Bari R, Datt Pant B, Stitt M, Scheible W-R. 2006. PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology 141: 988999.
  • Barker S, Stummer B, Gao L, Dispain I, O’Connor P, Smith S. 1998. A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. The Plant Journal 15: 791797.
  • Bates TR, Lynch JP. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell & Environment 19: 529538.
  • Bates TR, Lynch JP. 2000. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany 87: 964970.
  • Bhattarai I, Mishra R. 1984. Study on the vesicular-arbuscular mycorrhiza of three cultivars of potato (Solanum tuberosum L.). Plant and Soil 79: 299303.
  • Blakeslee JJ, Peer WA, Murphy AS. 2005. Auxin transport. Current Opinion in Plant Biology: Cell Signalling and Gene Regulation 8: 494500.
  • Bonanomi A, Wiemken A, Boller T, Salzer P. 2001. Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biology 3: 194199.
  • Brechenmacher L, Weidmann S, Van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V. 2004. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatulaGlomus mosseae interactions. Mycorrhiza 14: 253262.
  • Bryla DR, Koide RT. 1998. Mycorrhizal response of two tomato genotypes relates to their ability to acquire and utilize phosphorus. Annals of Botany 82: 849857.
  • Buchanan BB, Gruissem W, Russel LJ. 2000. Biochemistry and molecular biology of plants. Rockville, MA, USA: American Society of Plant Physiologists.
  • Bucher M, Rausch C, Daram P. 2001. Molecular and biochemical mechanisms of phosphorus uptake into plants. Journal of Plant Nutrition and Soil Science 164: 209217.
  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G. 2000. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant–Microbe Interactions 13: 693698.
  • Bun-Ya M, Nishimura M, Harashima S, Oshima Y. 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Molecular and Cellular Biology 11: 32293238.
  • Van Buuren ML, Maldonado-Mendoza IE, Trieu AT, Blaylock LA, Harrison MJ. 1999. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Molecular Plant–Microbe Interactions 12: 171181.
  • Cavagnaro TR, Smith FA, Ayling SM, Smith SE. 2003. Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytologist 157: 127134.
  • Chabaud M, Venard C, Defaux-Petras A, Becard G, Barker DG. 2002. Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytologist 156: 265273.
  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. 2006. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. The Plant Cell 18: 412421.
  • Chiou TJ, Liu H, Harrison MJ. 2001. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. The Plant Journal 25: 281293.
  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803814.
  • Clarkson DT. 1985. Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology 36: 77115.
  • Cogliatti DH, Clarkson DT. 1983. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiologia Plantarum 58: 287294.
  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V. 1998. Cell defense responses associated with localized and systemic resistance to Phyophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant–Microbe Interactions 11: 10171028.
  • Cullimore JV, Ranjeva R, Bono JJ. 2001. Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends in Plant Science 6: 2430.
  • Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826833.
  • Daram P, Brunner S, Persson BL, Amrhein N, Bucher M. 1998. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206: 225233.
  • Delhaize E, Randall PJ. 1995. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology 107: 207213.
  • Drew MC, Saker LR, Barber SA, Jenkins W. 1984. Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a solution-depletion technique. Planta 160: 490499.
  • Eckardt NA. 2005. Insights into plant cellular mechanisms: of phosphate transporters and arbuscular mycorrhizal infection. The Plant Cell 17: 32133216.
  • Epstein E, Hagen CE. 1952. A kinetic study of the absorption of alkali cations by barley roots. Plant Physiology 27: 457474.
  • Epstein E, Rains DW, Elzam OE. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences, USA 49: 684692.
  • Ezawa T, Hayatsu M, Saito M. 2005. A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Molecular Plant–Microbe Interactions 18: 10461053.
  • Farmer E, Schulze-Lefert P. 2005. Biotic interactions: From molecular networks to inter-organismal communities. Current Opinion in Plant Biology 8: 343345.
  • Felle H. 1994. The H+/Cl symporter in root-hair cells of Sinapis alba. Plant Physiology 106: 11311136.
  • Föhse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil 74: 359368.
  • Forde BG, Clarkson DT. 1999. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Advances in Botanical Research 30: 190.
  • Forde BG, Lorenzo H. 2001. The nutritional control of root development. Plant and Soil 232: 5168.
  • Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J. 2004. The transcriptional control of plant responses to phosphate limitation. Journal of Experimental Botany 55: 285293.
  • Frank B. 1885. Über die auf Wurzelsymbiosen beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3: 128145.
  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology 15: 20382043.
  • Furihata T, Suzuki M, Sakurai H. 1992. Kinetic characterizatin of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant and Cell Physiology 33: 11511157.
  • Gahoonia TS, Nielsen NE. 2004. Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil 262: 5562.
  • Gahoonia TS, Nielsen NE, Joshi PA, Jahoor A. 2001. A root hairless barley mutant for elucidating genetics of root hairs and phosphorus uptake. Plant and Soil 235: 211219.
  • Gassmann W, Schroeder JI. 1994. Inward-rectifying K+ channels in root hairs of wheat. Plant Physiology 105: 13991408.
  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. The Plant Cell 17: 34893499.
  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S. 2000. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211: 609613.
  • Gilroy I, Jones DL. 2000. Through form to function: root hair development and nutrient uptake. Trends in Plant Science 5: 5660.
  • Glassop D, Smith SE, Smith FW. 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222: 688698.
  • Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J. 2005. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17: 35003512.
  • Gordon-Weeks R, Tong Y, Davies TGE, Leggewie G. 2003. Restricted spatial expression of a high-affinity phosphate transporter in potato roots. Journal of Cell Science 116: 31353144.
  • Grabov A, Böttger M. 1994. Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiology 105: 927935.
  • Grierson C, Roberts K, Feldmann K, Dolan L. 1997. The COW1 locus of Arabidopsis acts after RHD2, and in parallel with RHD3 and TIP1, to determine the shape, rate of elongation, and number of root hairs produced from each site of hair formation. Plant Physiology 115: 981990.
  • Guimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences, USA 102: 80668070.
  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nurnberger T, Schmelzer E, Somssich IE, Tan J. 2003. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Sciences, USA 100: 1456914576.
  • Harrison MJ, Dewbre GR, Liu JY. 2002. A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14: 24132429.
  • Hartje S, Zimmermann S, Klonus D, Müller-Röber B. 2000. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210: 723731.
  • Hirai T, Heymann JA, Shi D, Sarker R, Maloney PC, Subramaniam S. 2002. Three-dimensional structure of a bacterial oxalate transporter. Nature Structural Biology 9: 597600.
  • Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H. 2005. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiology 137: 12831301.
  • Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301: 616620.
  • Isayenkov S, Fester T, Hause B. 2004. Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. Journal of Plant Physiology 161: 13791383.
  • Itoh S, Barber SA. 1983. Phosphorus uptake by six plant species as related to root hairs. Agronomy Journal 75: 457461.
  • Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu Y-G. 2005. Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant, Cell & Environment 28: 928938.
  • Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135: 575585.
  • Journet EP, Van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P. 2002. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Research 30: 55795592.
  • Jungk A, Claassen N. 1989. Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Zeitschrift für Pflanzenernährung und Bodenkunde 152: 151157.
  • Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M. 2002. Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Science 163: 837846.
  • Kalsi G, Etzler ME. 2000. Localization of a nod factor-binding protein in legume roots and factors influencing its distribution and expression. Plant Physiology 124: 10391048.
  • Karandashov V, Bucher M. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10: 2229.
  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M. 2004. Evolutionary conservation of phosphate transport in the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 101: 62856290.
  • Karthikeyan AS, Varadarajan DK, Mukatira UT, D’Urzo MP, Damsz B, Raghothama KG. 2002. Regulated expression of Arabidopsis phosphate transporters. Plant Physiology 130: 221233.
  • Kistner C, Parniske M. 2002. Evolution of signal transduction in intracellular symbiosis. Trends in Plant Science 7: 511518.
  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. 2005. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. The Plant Cell 17: 22172229.
  • Kochian LV, Jones DL, Shaff JE. 1994. The role of ion transport processes in root hair tip growth in Limnobium stoloniferum. Current Topics in Plant Physiology 12: 150160.
  • Koide RT, Kabir Z. 2000. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist 148: 511517.
  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G. 2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiology 131: 952962.
  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. 2000. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiology 41: 10301037.
  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P. 2002. Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biology 4: 754761.
  • Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. 1996. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. The Plant Journal 9: 195203.
  • Lau WT, Howson RW, Malkus P, Schekman R, O'Shea EK. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proceedings of the National Academy of Sciences, USA 97: 11071112.
  • Lau WW, Schneider KR, O'Shea EK. 1998. A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae. Genetics 150: 13491359.
  • Lauter F-R, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB. 1996. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proceedings of the National Academy of Sciences, USA 93: 81398144.
  • Leggewie G, Willmitzer L, Riesmeier JW. 1997. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. The Plant Cell 9: 381392.
  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. The Plant Cell 15: 21062123.
  • Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG. 1998a. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology 116: 9199.
  • Liu H, Trieu AT, Blaylock LA, Harrison MJ. 1998b. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant–Microbe Interactions 11: 1422.
  • López-Bucio J, Cruz-Ramirez A, Herrera-Estrella L. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6: 280287.
  • López-Bucio J, De La Vega OM, Guevara-Garcia A, Herrera-Estrella L. 2000. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology 18: 450453.
  • Lynch J. 1995. Root architecture and plant productivity. Plant Physiology 109: 713.
  • Ma Z, Bielenberg DG, Brown KM, Lynch JP. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell & Environment 24: 459467.
  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. 2006. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology 47: 807817.
  • Marschner H. 1995. Mineral nutrition of higher plants. London, UK: Academic Press.
  • Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89102.
  • Mimura T, Dietz K, Kaiser W, Schramm M, Kaiser G, Heber U. 1990. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves. Planta 180: 139146.
  • Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L. 2004. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology 55: 727741.
  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D. 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Sciences, USA 94: 70987102.
  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun D-J, Hasegawa PM. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences, USA 102: 77607765.
  • Moriau L, Michelet B, Bogaerts P, Lambert L, Michel A, Oufattole M, Boutry M. 1999. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. The Plant Journal 19: 3141.
  • Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 93: 1051910523.
  • Muchhal US, Raghothama KG. 1999. Transcriptional regulation of plant phosphate transporters. Proceedings of the National Academy of Sciences, USA 96: 58685872.
  • Mudge SR, Rae AL, Diatloff E, Smith FW. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal 31: 341353.
  • Mudge SR, Smith FW, Richardson AE. 2003. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Science 165: 871878.
  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. 2005. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal 42: 236250.
  • Nagy R, Vasconcelos MJ, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M. 2006. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology 8: 186197.
  • Nandi S, Pant R, Nissen P. 1987. Multiphasic uptake of phosphate by corn roots. Plant, Cell & Environment 10: 463474.
  • Narang RA, Bruene A, Altmann T. 2000. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiology 124: 17861799.
  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E. 2000. Physiological aspects of cluster root function and development in phosphorus-deficient white lupine (Lupinus albus L.). Annals of Botany 85: 909919.
  • Olah B, Briere C, Becard G, Denarie J, Gough C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal 44: 195207.
  • Oldroyd GE, Downie JA. 2004. Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology 5: 566576.
  • Olsen J, Schaefer J, Edwards D, Hunter M, Galea V, Muller L. 1999. Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicum (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.) to five rates of applied phosphorus. Australian Journal of Agricultural Research 50: 223237.
  • Pao SS, Paulsen IT, Saier MH Jr. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62: 134.
  • Parets-Soler A, Pardo J, Serrano R. 1990. Immunocytolocalization of plasma membrane H+-ATPase. Plant Physiology 93: 16541658.
  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS. 2000. Genetic interactions during root hair morphogenesis in Arabidopsis. The Plant Cell 12: 19611974.
  • Paszkowski U, Kroken S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 99: 1332413329.
  • Plaxton W. 1998. Metabolic aspects of phosphate starvation in plants. In: LynchJ, DeikmanJ, eds. Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. Rockville, MD, USA: American Society of Plant Physiologists, 229.
  • Poirier Y, Bucher M. 2002. Phosphate transport and homeostasis in Arabidopsis. In: SomervilleC, MeyerowitzEM, eds. The Arabidopsis book. Rockville, MD, USA: American Society of Plant Biologists, 135.
  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I. 2005. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist 168: 445454.
  • Rae AL, Cybinski DH, Jarmey JM, Smith FW. 2003. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology 53: 2736.
  • Rae AL, Jarmey JM, Mudge SR, Smith FW. 2004. Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Functional Plant Biology 31: 141148.
  • Raghothama KG. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50: 665693.
  • Raghothama KG. 2000. Phosphate transport and signaling. Current Opinion in Plant Biology 3: 182187.
  • Rausch C, Bucher M. 2002. Molecular mechanisms of phosphate transport in plants. Planta 216: 2337.
  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462470.
  • Van Rhijn P, Fang Y, Galili S, Shaul O, Atzmon N, Wininger S, Eshed Y, Lum M, Li Y, To VV, Fujishige N, Kapulnik Y, Hirsch AM. 1997. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and rhizobium-induced nodules may be conserved. Proceedings of the National Academy of Sciences, USA 94: 54675472.
  • Richardson AE, Hadobas PA, Hayes JE. 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant Journal 25: 641649.
  • Roose T, Fowler AC. 2004. A mathematical model for water and nutrient uptake by plant root systems. Journal of Theoretical Biology 228: 173184.
  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development 15: 21222133.
  • Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T. 2000. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant–Microbe Interactions 13: 763777.
  • Schachtman DP, Reid RJ, Ayling SM. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology 116: 447453.
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences, USA 97: 1165511660.
  • Schiefelbein JW, Benfey PN. 1991. The development of plant roots: new approaches to underground problems. The Plant Cell 3: 11471154.
  • Schiefelbein JW, Shipley A, Rowse P. 1992. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187: 455459.
  • Schiefelbein JW, Somerville CR. 1990. Genetic control of root hair development in Arabidopsis thaliana. The Plant Cell 2: 235243.
  • Schmidt W, Schikora A. 2001. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiology 125: 20782084.
  • Schunmann PH, Richardson AE, Smith FW, Delhaize E. 2004a. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany 55: 855865.
  • Schunmann PHD, Richardson AE, Vickers CE, Delhaize E. 2004b. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology 136: 42054214.
  • Schweiger PF, Robson AD, Barrow NJ. 1995. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist 131: 247254.
  • Shimogawara K, Usuda H. 1995. Uptake of inorganic phosphate by suspension-cultured tobacco cells: kinetics and regulation by Pi starvation. Plant and Cell Physiology 36: 341351.
  • Shin H, Shin H-S, Chen R, Harrison MJ. 2006. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant Journal 45: 712726.
  • Shin H, Shin H-S, Dewbre GR, Harrison MJ. 2004. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal 39: 629642.
  • Smith FW, Ealing PM, Dong B, Delhaize E. 1997. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal 11: 8392.
  • Smith S, Gianinazzi-Pearson V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review of Plant Physiology and Plant Molecular Biology 39: 221244.
  • Smith FW, Rae AL, Hawkesford MJ. 2000. Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica et Biophysica Acta 1465: 236245.
  • Smith SE, Read DJ. 1997. Mycorrhizal symbiosis. San Diego, CA, USA: Academic Press.
  • Smith SE, Smith FA, Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133: 1620.
  • Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511524.
  • Stevens MA, Rick CM. 1986. Genetics and breeding. In: The tomato crop: a scientific basis for improvement. AthertonJG, RudichJ, eds. London, UK: Chapman & Hall, 35109.
  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI. 1995. Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytologist 129: 643650.
  • Sze H, Li X, Palmgren MG. 1999. Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. The Plant Cell 11: 677690.
  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K. 2000. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant Journal 23: 171182.
  • Thibaud J-B, Davidian J-C, Sentenac H, Soler A, Grignon C. 1988. H+ cotransports in roots as related to the surface pH shift induced by H+ excretion. Plant Physiology 88: 14691473.
  • Toth R, Toth D, Starke D, Smith DR. 1990. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Canadian Journal of Botany 68: 10391044.
  • Ullrich-Eberius CI, Novacky A, Van Bel AJE. 1984. Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161: 4652.
  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briata JF, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14: 12231233.
  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP. 2004. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Molecular Plant–Microbe Interactions 17: 6269.
  • Weisenseel M, Dorn A, Jaffe L. 1979. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiology 64: 512518.
  • Wiersum LK. 1958. Density of root branching as affected by substrate and separations. Acta Botanica Neerlandica 7: 174190.
  • Wilson VG. 2004. Sumoylation, molecular biology and biochemistry. Norwich, UK: Horizon Bioscience.
  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology 132: 12601271.
  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F. 2003. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Molecular Plant–Microbe Interactions 16: 306314.
  • Xiao K, Harrison MJ, Wang ZY. 2005. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222: 2736.
  • Young ND, Mudge J, Ellis TH. 2003. Legume genomes: more than peas in a pod. Current Opinion in Plant Biology 6: 199204.
  • Zimmermann P, Zardi G, Lehmann M, Zeder C, Amrhein N, Frossard E, Bucher M. 2003. Engineering the root–soil interface via targeted expression of a synthetic phytase gene in trichoblasts. Plant Biotechnology Journal 1: 353360.
  • Zobel R. 1996. Genetic control of root systems. In: WaiselY, EshelA, KafkafiU, eds. Plant roots: the hidden half, 2nd edn. New York, NY, USA: Marcel Dekker, 2130.