SEARCH

SEARCH BY CITATION

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest ecosystems – hypothesis revisited. Bioscience 39: 378386.
  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems. Bioscience 48: 921934.
  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439449.
  • Ågren GI, Bosatta E. 2002. Reconciling differences in predictions of temperature response of soil organic matter. Soil Biology and Biochemistry 34: 129132.
  • Ågren GI, Bosatta E, Magill AH. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128: 9498.
  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351372.
  • Andersson P. 2002. Nitrogen turnover in Swedish spruce forest ecosystems. PhD thesis. Acta Universitatis Agriculturae Sueciae, Agraria 342.
  • Atkin OK, Tjoelker MG. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8: 343351.
  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research 30: 113175.
  • Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9: 479492.
  • Bergh J, Linder S. 1999. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biology 5: 245253.
  • Bergh J, Linder S, Lundmark T, Elving B. 1999. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecology and Management 119: 5162.
  • Binkley D, Högberg P. 1997. Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management 92: 119152.
  • Birdsey R, Pregitzer K, Lucier A. 2006. Forest carbon management in the United States: 1600–2100. Journal of Environmental Quality 35: 14611469.
  • Black AT, Gaumont-Guay D, Jassal RS, Amiro BD, Jarvis. G, Gower. T, Kelliher FM, Dunn A, Wofsy SC. 2005. Measurement of CO2 exchange between boreal forest and the atmosphere. In: Griffiths H, Jarvis PG, eds. The carbon balance of forest biomes, pp. 151185. Oxford, UK: Taylor & Francis.
  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehlinger JR. 2002. C-13 content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131: 113124.
  • Butnor J, Lohnsen K, Oren R, Katul G. 2003. Reduction of forest floor respiration on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Global Change Biology 9: 849861.
  • Cannell MGR. 1989. Physiological basis of wood production: a review. Scandinavian Journal of Forest Research 4: 459490.
  • Carrara A, Kowalski AS, Neirynck J, Janssens IA, Curiel Yuste J, Ceulemans R. 2003. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology 119: 209227.
  • Carrara A, Janssens IA, Yuste JC, Ceulemans R. 2004. Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology 126: 1531.
  • Ceulemans R, Mousseau M. 1994. Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127: 425446.
  • Chapin III FSG, Woodwell M, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9: 10411050.
  • Churkina G, Tenhunen J, Thornton P, Falge EM, Elbers JA, Erhard M, Grünwald T, Kowalski AS, Rannik Ü, Sprinz D. 2003. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6: 1681184.
  • Clements FE. 1916. Plant succession. an analysis of the development of vegetation. Carnegie Institute of Washington Publication 242: 1512.
  • Conen F, Yakutin MV, Sambuu AD. 2003. Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology 9: 15151520.
  • Conen F, Zerva A, Arrouays D, Jolivet C, Jarvis PG, Grace J, Mencuccini M. 2005. The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and Boreal forests. In: Griffiths H, Jarvis PG, eds. The carbon balance of forest biomes, pp. 235249. Oxford, UK: Taylor & Francis.
  • Cotrufo MF, Briones MJI, Ineson P. 1998a. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biology and Biochemistry 30: 15651571.
  • Cotrufo MF, Ineson P, Scott A. 1998b. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 4354.
  • Cotrufo MF, Drake B, Ehlinger JR. 2005. Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil Biology and Biochemistry 37: 11051112.
  • Curtis PS, Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113: 299313.
  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton BM. 2001. Climate change and forest disturbances. Bioscience 51: 723734.
  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165173.
  • Dewar RC, Medlyn BE, McMurtrie RE. 1999. Acclimation of the respiration photosynthesis ratio to temperature: insights from a model. Global Change Biology 5: 615622.
  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185190.
  • Edwards NT, Tschaplinski TJ, Norby RJ. 2002. Stem respiration increases in CO2-enriched sweetgum trees. New Phytologist 155: 239248.
  • Ekblad A, Högberg P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127: 305308.
  • Ekblad A, Boström B, Holm A, Comstedt D. 2005. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143: 136142.
  • Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI. 2005. The response of heterotrophic CO2 flux to soil warming. Global Change Biology 11: 167181.
  • Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD. 2004. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert Global Change Biology 10: 21212138.
  • Ericsson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J. in press. Integrated carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Research.
  • Ewers BE, Oren R, Sperry JS. 2000. Root hydraulic conductance: a reflection of water balance and a constraint on canopy stomatal conductance. Plant, Cell & Environment 23: 10551066.
  • Ewers BE, Oren R, Phillips N, Strömgren M, Linder S. 2001. Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. Tree Physiology 21: 841850.
  • Falge E, Baldocchi D, Tenhunen J et al. 2002a. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113: 5374.
  • Falge E, Tenhunen J, Baldocchi D et al. 2002b. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113: 7595.
  • Fang C, Smith P, Moncrieff JB, Smith JU. 2005. Similar response of labile and resistant organic matter pools to changes in temperature. Nature 433: 5759.
  • Fierer N, Craine JM, McLauchlan K, Schimel JP. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86: 320326.
  • Finzi AC, Schlesinger AH. 2002. Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology 8: 12171229.
  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132: 567578.
  • Fog K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biology Review 63: 433462.
  • Franklin O, Högberg P, Ekblad A, Ågren GI. 2003. Pine forest floor carbon accumulation in response to N and PK additions – bomb 14C modelling and respiration studies. Ecosystems 6: 644658.
  • Fransson PMA, Taylor AFS, Finlay RD. 2000. Effects of continuous optimal fertilisation upon belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiology 20: 599606.
  • Freeman M, Morén AS, Strömgren M, Linder S. 2005. Climate change impacts on forests in Europe: biological impact mechanisms. In: Kellomäki S, Leinonen S, eds. Management of European forests under changing climatic conditions. Research Notes 163. Joensuu, Finland: Forest Faculty, University of Joensuu, 46115.
  • van de Geijn SC, van Veen JA. 1993. Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104–105: 283292.
  • Giardina CP, Binkley D, Ryan MG, Fownes JH, Senock RS. 2004. Belowground carbon cycling in a humid tropical forest decreases with fertilisation. Oecologia 139: 545550.
  • Giardina CP, Ryan MG. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404: 858861.
  • Giardina CP, Ryan MG. 2002. Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5: 487499.
  • Giardina CP, Ryan MG, Hubbard RM, Binkley D. 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal 65: 12721279.
  • Gielen B, Ceulemans R. 2001. The likely impact of rising atmospheric CO2 on natural and managed Populus: a literature review. Environmental Pollution 115: 335358.
  • Gielen B, Calfapietra C, Claus A, Sabatti M, Ceulemans R. 2002. Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist 153: 9199.
  • Goudriaan J. 1990. Atmospheric CO2, global carbon fluxes and the biosphere. In: Rabbinge R, Goudriaan J, van Keulen H, Penning de Vries FWT, van Laar HH, eds. Theoretical production ecology: reflections and prospects. Wageningen, the Netherlands: Pudoc, 1740.
  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279: 214217.
  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications 11: 13951411.
  • van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C. 2006. Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences, USA 103: 65716574.
  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A. 1998. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management 101: 3755.
  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457461.
  • Hamilton JG, Thomas RB, Delucia EH. 2001. Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant, Cell & Environment 24: 975982.
  • Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA. 2005. Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology 11: 14021423.
  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Global Change Biology 6: 174184.
  • Harley P, Guenther A, Zimmerman P. 1997. Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiology 17: 705714.
  • Harmon ME, Ferrell WK, Franklin JF. 1990. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247: 699702.
  • Harrison AF, Schulze E-D, Gebauer G, Bruckner G. 2000. Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze E-D, ed. Carbon and nitrogen cycling in European forest ecosystems. Ecological Studies 142. Berlin: Springer-Verlag, 171188.
  • Hobbie SE. 2000. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3: 484494.
  • Hobbie SE. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8: 644656.
  • Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81: 18671877.
  • Högberg P, Read DJ. 2006. Towardws a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution 21: 549554.
  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789792.
  • Hoosbeek MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, de Angelis P, Scarascia-Mugnozza G. 2004. More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Global Biogeochemical Cycles 18. doi: 10.1029/2003GB002127
  • Hoosbeek MR, Li Y, Scarascia-Mugnozza GE. 2006. Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation. Plant and Soil 281: 247254.
  • Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S. 2006. Influence of long-term nutrient optimisation on biomass, carbon and nitrogen acquisition and allocation in Norway spruce. Canadian Journal of Forest Research 36: 15631571.
  • IPCC. 2001. Climate Change 2001. The Scientific Basis. Cambridge, UK: Cambridge University Press.
  • Janssens IA, Lankreijer H, Matteucci G et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7: 269278.
  • Janssens IA, Medlyn B, Gielen B, Laureysens I, Jach ME, Van Hove D, Ceulemans R. 2005. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Tree Physiology 25: 325337.
  • Jarvis PG, Fowler DG. 2001. Forests and the atmosphere. In: Evans J, ed. The forests handbook, Vol. 1. Oxford, UK: Blackwell Science, 229281.
  • Jarvis PG, Linder S. 2000. Constraints to growth of boreal forests. Nature 405: 904905.
  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology 11: 20572064.
  • Johnson DW. 1992. Nitrogen-retention in forest soils. Journal of Environmental Quality 21: 112.
  • Johnson DW, Curtis PS. 2001. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management 140: 227238.
  • Johnson DW, Knoepp JD, Swank WT, Shan J, Morris LA, Van Lear DH, Kapeluck PR. 2002. Effects of forest management on soil carbon: results of some long-term resampling studies. Environmental Pollution S1: 201208.
  • Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL.. 2006. Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytologist 170: 345356.
  • Kainulainen P, Holopainen JK, Holopainen T. 1998. The influence of elevated CO2 and O3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure years. Oecologia 114: 455460.
  • Karjalainen T, Schuck A, Prietzel J, Mellert K-H, Kahle H-P, Spiecker H, Ågren GI, van Oijen M, Kellomäki S, eds. in press. Causes and consequences of forest growth trends in Europe – results of the RECOGNITION project.
  • Kasurinen A, Helmisaari HS, Holopainen T. 1999. The influence of elevated CO2 and O3 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years. Global Change Biology 5: 771780.
  • Kellomäki S, Wang KY. 1996. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiology 16: 765772.
  • Kellomäki S, Wang KY. 1997. Effects of long-term CO2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scots pine. Forest Ecology and Management 99: 309326.
  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128: 237250.
  • Kirschbaum MUF. 2004. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology 10: 18701877.
  • Knorr M, Frey SD, Curtis PS. 2005b. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86: 32523257.
  • Knorr W, Prentice IC, House JI, Holland EA. 2005a. Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298301.
  • Kolari P, Pumpanen J, Rannik Ü, Ilvesniemi H, Hari P, Berninger F. 2004. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology 10: 11061119.
  • Körner C. 2003. Carbon limitation in trees. Journal of Ecology 91: 417.
  • Körner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393411.
  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G. 2005. Exposing a mature Swiss forest to elevated atmospheric CO2 increased the flux of carbon through the trees and soils but did not increase net forest growth or carbon storage. Science 309: 13601362.
  • Kowalski S, Sartore M, Burlett R, Berbigier P, Loustau D. 2003. The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Global Change Biology 9: 10511065.
  • Kowalski AS, Loustau D, Berbigier P, Manca G, Tedeschi V, Borghetti M, Valentini R, Kolari P, Berninger F, Rannik Ü, Hari P, Rayment M, Mencuccini M, Moncrieff J, Grace J. 2004. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biology 10: 17071723.
  • Kull O. 2002. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133: 267279.
  • Lai C-T, Katul GG, Butnor J, Siqueira M, Ellsworth D, Maier C, Johnsen K, McKeand S, Oren R. 2002. Modeling the limits on the response of net carbon exchange to fertilization in a southeastern pine forest. Plant, Cell & Environment 25: 10951119.
  • Law BE, Thornton PE, Irvine J, Anthoni PM, Van Tuyl S. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology 7: 755777.
  • Law BE, Sun OJ, Cambell J, Van Tuyl S, Thorton PE. 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology 9: 510524.
  • Lichter J, Barron SH, Bevacqua CE, Finzi AC, Irving KF, Stemmler EA, Schlesinger WH. 2005. Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86: 18351847.
  • Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MG, Tingey DT. 2001. Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms. Plant and Soil 229: 259270.
  • Linder S. 1995. Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecological Bulletins (Copenhagen) 44: 178190.
  • Linder S, Murray M. 1998. Do elevated CO2 concentrations and nutrients interact? In: Jarvis PG, ed. European forests and global change. Cambridge, UK: Cambridge University Press, 215235.
  • Lindroth A, Grelle A, Morén AS. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology 4: 443450.
  • Lloyd J, Shibistova O, Zolotoukhine D, Kolle O, Arneth A, Wirth C, Styles JM, Tchebakova NM, Schulze ED. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus Series B – Chemical and Physical Meteorology 54: 590610.
  • Luo Y, Wan S, Hui D, Wallace LL. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413: 622625.
  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig A, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54: 731739.
  • Magill AH, Aber JD. 1998. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil 203: 301311.
  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P. 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management 196: 728.
  • Majdi H, Öhrvik J. 2004. Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology 10: 182188.
  • Malhi Y, Baldocchi D, Jarvis PG. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment 22: 715740.
  • Malhi Y, Baker TR, Phillips OL et al. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10: 563591.
  • McCarthy HR, Oren R, Finzi AC, Johnsen KH. 2006. Canopy leaf area constrains [CO2]-induced enhancement of productivity partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, USA 103: 1935619361.
  • Medlyn BE, Badeck FW, de Pury DGG et al. 1999. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22: 1999.
  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, de Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG. 2001. Stomatal conductance of European forest species after long-term exposure to elevated [CO2]: a synthesis of experimental data. New Phytologist 149: 247264.
  • Medlyn BE, Berbigier P, Clement R, Grelle A, Loustau D, Linder S, Wingate L, Jarvis PG, Sigurdsson BD, McMurtrie RE. 2005. The carbon balance of coniferous forests growing in contrasting climatic conditions: a model-based analysis. Agricultural and Forest Meteorology 131: 97124.
  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 21732176.
  • Meyer J, Schneider BU, Werk K, Oren R, Schulze ED. 1988. Performance of two Picea-abies (L) Karst stands at different stages of decline. 5. Root-tip and ectomycorrhiza development and their relations to above ground and soil nutrients. Oecologia 77: 713.
  • Milyukova IM, Kolle O, Varlagin AV, Vygodskaya NN, Schulze ED, Lloyd J. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus Series B – Chemical and Physical Meteorology 54: 429442.
  • Moore TR, Trofymov JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S. 1999. Litter decomposition rates in Canadian forests. Global Change Biology 5: 7582.
  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698702.
  • Nadelhoffer KJ. 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist 147: 131139.
  • Neilson RP, Drapek RJ. 1998. Potentially complex biosphere responses to transient global warming. Global Change Biology 4: 505521.
  • Nilsson LO, Wallander H. 2003. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist 158: 409416.
  • Nilsson LO, Wiklund K. 1995. Indirect effects of N and S deposition on a Norway spruce ecosystem. An update of findings within the Skogaby project. Water, Air, & Soil Pollution 85: 16131622.
  • Nohrstedt H-Ö. 2001. Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scandinavian Journal of Forest Research 16: 555573.
  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. 1999. Tree responses to rising CO2: implications for the future forest. Plant, Cell & Environment 22: 683714.
  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153165.
  • Norby RJ, Sholtis JD, Gunderson CA, Jawdy SS. 2003. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia 136: 574584.
  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences, USA 101: 96899693.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253280.
  • Olsson P, Linder S, Giesler R, Högberg P. 2005. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology 11: 17451753.
  • Oren R, Schulze ED, Matyssek R, Zimmermann R. 1986. Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass. Oecologia 70: 187193.
  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469472.
  • Oren R, Hsieh C-I, Stoy P, Albertson J, McCarthy HR, Harrell P, Katul GG. 2006. Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology 12: 883896.
  • Palmroth S, Stenberg P, Smolander S, Voipio P, Smolander H. 2002. Fertilization has little effect on light-interception efficiency of Picea abies shoots. Tree Physiology 22: 11851192.
  • Palmroth S, Maier CA, McCarthy HR, Oishi AC, Kim H-S, Johnsen K, Katul GG, Oren R. 2005. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby oak–hickory forest. Global Change Biology 11: 114.
  • Palmroth S, Oren R, McCarthy HR, Johnsen KH, Finzi AC, Butnor JR, Ryan MG, Schlesinger WH. 2006. Aboveground sink strength in forests controls the allocation of carbon belowground and its CO2-induced enhancement. Proceedings of the National Academy of Sciences, USA 103: 1936219367.
  • Parrent JL, Morris WF, Vilgalys R. 2006. CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87: 22782287.
  • Paul EA, Morris SJ, Six J, Paustian K, Gregorich EG. 2003. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Science Society of America Journal 67: 16201628.
  • Persson T, Karlsson PS, Seyferth U, Sjöberg RM, Rudebeck A. 2000. Carbon mineralisation in European forest soils. In: Schulze ED, ed. Carbon and nitrogen cycling in European forest ecosystems. Ecological Studies 142. Berlin: Springer-Verlag, 257275.
  • Phillips DL, Johnson MG, Tingey DT, Storm MJ, Ball JT, Johnson DW. 2006. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study. Oecologia 148: 6475.
  • Poorter H, Navas ML. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157: 175198.
  • Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology 10: 20522077.
  • Pregitzer KS, Zak DZ, Maziasz J, DeForest J, Curtis PS, Lussenhop J. 2000. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10: 1833.
  • Prescott CE. 1995. Does nitrogen availability control rates of litter decomposition in forests? Plant and Soil 168–169: 8388.
  • Prior SA, Runion GB, Mitchell RJ, Rogers HH, Amthor JS. 1997. Effects of atmospheric CO2 on longleaf pine: productivity and allocation as influenced by nitrogen and water. Tree Physiology 17: 397405.
  • Radoglou KM, Jarvis PG. 1990a. Effects of CO2 enrichment on four poplar clones. 1. Growth and leaf anatomy. Annals of Botany 65: 617626.
  • Radoglou KM, Jarvis PG. 1990b. Effects of CO2 enrichment on four poplar clones. 2. Leaf surface-properties. Annals of Botany 65: 627632.
  • Rannik Ü, Altimir N, Raittila J, Suni T, Gaman A, Hussein T, Holtta T, Lassila H, Latokartano M, Lauri A, Natsheh A, Petäjä T, Sorjamaa R, Ylä-Mella H, Keronen P, Berninger F, Vesala T, Hari P, Kulmala M. 2002. Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agricultural and Forest Meteorology 111: 187202.
  • Rastetter EB, Ågren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled- element-cycles model. Ecological Applications 7: 444460.
  • Read D, Beerling D, Cannell M, Cox P, Curran P, Grace J, Ineson P, Jarvis P, Malhi Y, Powlson D, Shepherd D, Woodward I. 2001. Annex 2. Examples of management activities to maximise carbon sequestration. 2.2 ‘Carbon Forestry’– the direct role of forest management. In: The role of land carbon sinks in mitigating global climate change. Policy Document 10/01. London: Royal Society.
  • Ryan MG. 1991. Effects of climate change on plant respiration. Ecological Applications 1: 157167.
  • Ryan MG, Waring RH. 1992. Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73: 21002108.
  • Ryan MG, Linder S, Vose JM, Hubbard RM. 1994. Dark respiration in pines. Ecological Bulletins (Copenhagen) 43: 5063.
  • Saxe H, Ellsworth DS, Heath J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139: 395436.
  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149: 369399.
  • Schäfer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi AC, Richter DD, Katul GG. 2003. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology 9: 13781400.
  • Schlesinger WH. 1997. Biogeochemistry, an Analysis of Global Climate Change. San Diego, CA, USA/London, UK: Academic Press.
  • Schlesinger WH, Lichter J. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411: 466469.
  • Schulze ED. 1989. Air pollution and forest decline in a spruce (Picea abies) forest. Science 244: 776783.
  • Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Global Change Biology 5: 703722.
  • Sigurdsson BD. 2001. Elevated [CO2] and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a three-year field study. Trees 15: 403413.
  • Sigurdsson BD, Thorgeirsson H, Linder S. 2001. Growth and dry-matter partitioning of young Populus trichocarpa trees during three years of elevated CO2 and fertilisation. Tree Physiology 21: 941950.
  • Sigurdsson BD, Roberntz P, Freeman M, Naess M, Saxe H, Thorgeirsson H, Linder S. 2002. Impact studies on Nordic forests: effects of elevated CO2 and fertilization on gas exchange. Canadian Journal of Forest Research 32: 779788.
  • Six J, Elliott ET, Paustian K, Doran JW. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal 62: 13671377.
  • Smith P. 2004. How long before a change in soil organic carbon can be detected? Global Change Biology 10: 18781883.
  • Spiecker H, Mielikainen K, Kohl M, Skovsgaard J, eds. 1996. Growth Trends in European Forests. European Forest Institute Report No. 5. Berlin/Heidelberg/New York: Springer-Verlag.
  • Stoy PC, Katul GG, Siqueira MBS, Juang J-Y, Novick KA, Uebelherr JM, Oren R. 2006. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology 141: 218.
  • Strain BR, Bazzaz FA. 1983. CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. In: Lemon ER, ed. AAAS Selected Symposium 84 . Boulder, CO, USA: Westview Press, pp. 177282.
  • Strömgren M. 2001. Soil-surface CO2 flux and growth in a boreal Norway spruce stand. Effects of soil warming and nutrition. PhD thesis. Acta Universitatis Agriculturae Sueciae, Silvestria 220.
  • Strömgren M, Linder S. 2002. Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Global Change Biology 8: 11941204.
  • Tamm CO. 1991. Nitrogen in terrestrial ecosystems, questions of productivity, vegetational changes, and ecosystem stability. Ecological Studies 81. Berlin: Springer-Verlag.
  • Taylor AR, Schröter D, Pflug A, Wolters V. 2004. Response of different decomposer communities to the manipulation of moisture availability: potential effects of changing precipitation patterns. Global Change Biology 10: 13131324.
  • Tingey DT, Phillips DL, Johnson MG. 2000. Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytologist 147: 87103.
  • Tissue DT, Lewis JD, Wullschleger SD, Amthor JS, Griffin KL, Anderson R. 2002. Leaf respiration at different canopy positions of sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology 22: 11571166.
  • Trumbore S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10: 399411.
  • Valentini R, Matteucci G, Dolman AJ et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404: 861865.
  • Vestgarden LS. 2001. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen. Soil Biology and Biochemistry 33: 465474.
  • Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13: 87115.
  • Wang YP, Jarvis PG. 1991. PAR absorption and its relation to above-ground dry matter production of Sitka spruce. Journal of Applied Ecology 28: 547560.
  • Waring RH, Landsberg JJ, Wiliams M. 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiology 18: 129134.
  • Whitehead D, Griffin KL, Turnbull MH, Tissue DT, Engel VC, Brown KJ, Schuster WSF, Walcroft AS. 2004. Response of total night-time respiration to differences in total daily photosynthesis for leaves in a Quercus rubra L. canopy: implications for modelling canopy CO2 exchange. Global Change Biology 10: 925938.
  • de Wit HA, Kvindesland S. 1999. Carbon stocks in Norwegian forest soils and effects of forest management on carbon storage. Rapport Fra Skogforskningen S14: 52.
  • WMO. 2006. WMO Greenhouse Gas Bulletin 1. Geneva: World Meteorological Organization/Global Atmosphere Watch. http://www.wmo.ch/web/arep/gaw/ghg/ghg-bulletin-en-03-06.pdf
  • Zak DR, Pregitzer KS, Curtis PS, Vogel CS, Holmes WE, Lussenhop J. 2000. Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecological Applications 10: 3446.
  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH. 2003. Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecological Applications 13: 15081514.