SEARCH

SEARCH BY CITATION

References

  • Agrawal GK, Rakwal R, Jwa NS. 2000. Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochemical and Biophysical Research Communications 278: 290298.
  • Ayliffe MA, Lagudah ES. 2004. Molecular genetics of disease resistance in cereals. Annals of Botany 94: 765773.
  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K. 2006. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal 25: 20072016.
  • Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D. 2003. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics 107: 113101147.
  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16: 24992513.
  • Chern M, Canlas PE, Fitzgerald HA, Ronald PC. 2005. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant Journal 43: 623635.
  • Chu Z, Ouyang Y, Zhang J, Yang H, Wang S. 2004. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive Royal gene Xa13. Molecular Genetics and Genomics 271: 111120.
  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Güimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J. 2003. A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences, USA 100: 49454950.
  • Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826833.
  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980986.
  • Diener AC, Ausubel FM. 2005. Resistance to Fusarium oxysporum1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171: 305321.
  • Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Perin C. 2006. OryGenesDB: a database for rice reverse genetics. Nucleic Acids Research 34: D736740.
  • Eulgem T. 2005. Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science 10: 7178.
  • Fujiwara M, Umemura K, Kawasaki T, Shimamoto K. 2006. Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiology 140: 734745.
  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences, USA 102: 80668070.
  • Hammond-Kosack KE, Parker JE. 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology 14: 177193.
  • Han CU, Lee CH, Jang KS, Choi GJ, Lim HK, Kim JC, Ahn SN, Choi JE, Cha JS, Kim HT, Cho KY, Lee SW. 2004. Identification of rice genes induced in a rice blast-resistant mutant. Molecules and Cells. 17: 462468.
  • He Z-H, He D, Kohorn BD. 1998. Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant Journal 14: 155163.
  • Jantasuriyarat C, Gowda M, Haller K, Hatfield J, Lu G, Stahlberg E, Zhou B, Li. H, Kim HYuY, Dean RA, Wing RA, Soderlund C, Wang GL. 2005. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiology 138: 105115.
  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proceedings of the National Academy of Sciences, USA 98: 94489453.
  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y et al. 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376379.
  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS. 2003. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications 300: 868876.
  • Kim S, Ahn IP, Lee YH. 2001. Analysis of genes expressed during rice– Magnaporthe grisea interactions. Molecular Plant and Microbe Interaction 14: 13401346.
  • Kim ST, Kim SG, Hwang du H, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4: 35693578.
  • Kim CY, Lee SH, Park HC, Bae CG, Cheong YH, Choi YJ, Han C, Lee SY, Lim CO, Cho MJ. 2000. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Molecular Plant and Microbe Interaction 13: 470474.
  • Kumar D, Klessig DF. 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, USA 100: 16 10116 106.
  • Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. 2005. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[w]. Plant Physiology 138: 16441652.
  • Lu G, Jantasuriyarat C, Zhou B, Wang GL. 2004. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theoretical and Applied Genetics 108: 525534.
  • Midoh N, Iwata M. 1996. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiology 37: 918.
  • Nawrath C, Heck S, Parinthawong N, Metraux JP. 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14: 275286.
  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. 2001. Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences, USA 98: 759764.
  • Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.
  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H. 2003. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Molecular Plant and Microbe Interaction 16: 1424.
  • Rauyaree R, Choi W, Fang E, Blackmon B, Dean RA. 2001. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Molecular Plant Pathology 2: 347354.
  • Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Report 25: 836847.
  • Sangster TA, Queitsch C. 2005. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Current Opinions in Plant Biology 8: 8692.
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences, USA 97: 1165511660.
  • Schulze-Lefert P, Vogel J. 2000. Closing the ranks to attack by powdery mildew. Trends in Plant Science 5: 343348.
  • Shim KS, Cho SK, Jeung JU, Jung KW, You MK, Ok SH, Chung YS, Kang KH, Hwang HG, Choi HC, Moon HP, Shin JS. 2004. Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Reports 22: 599607.
  • Shimono M, Yazaki J, Nakamura K, Kishimoto N, Kikuchi S, Iwano M, Yamamoto K, Sakata K, Sasaki T, Nishiguchi M. 2003. cDNA microarray analysis of gene expression in rice plants treated with probenazole, a chemical inducer of disease resistance. Journal of General Plant Pathology 69: 7682.
  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences, USA 99: 1164011645.
  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F. 2003. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317330.
  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant Journal 11: 11871194.
  • Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K. 2005. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Molecular Plant and Microbe Interaction 18: 5259.
  • Van Loon LC, Rep M, Pieterse CM. 2006. Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology 44: 135162.
  • Ventelon-Debout M, Nguyen TT, Wissocq A, Berger C, Laudie M, Piegu B, Cooke R, Ghesquiere A, Delseny M, Brugidou C. 2003. Analysis of the transcriptional response to Rice Yellow Mottle Virus infection in Oryza sativa indica and japonica cultivars. Molecular Genetics and Genomics 270: 253262.
  • Wang L, Pei Z, Tian Y, He C. 2005. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Molecular Plant and Microbe Interaction 18: 375384.
  • Wen N, Chu Z, Wang S. 2003. Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Molecular Genetics and Genomics 269: 331339.
  • Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322: 681692.
  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. 2004. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiology 135: 14471156.
  • Xia Y. 2004. Proteases in pathogenesis and plant defence. Cell Microbiology 6: 905913.
  • Xiong L, Lee MW, Qi M, Yang Y. 2001. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Molecular Plant and Microbe Interaction 14: 685692.
  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences, USA 99: 75307535.
  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16: 27952808.
  • Zhou B, Peng K, Chu Z, Wang S, Zhang Q. 2002. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.). Science in China 45: 449467.