SEARCH

SEARCH BY CITATION

References

  • Cesco S, Rombola AD, Tagliavini M, Varanini Z, Pinton R. 2006. Phytosiderophores released by graminaceous species promote Fe-uptake in citrus. Plant and Soil 287: 223233.
  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. 2001. Maize yellow stripe 1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409: 346349.
  • Fushiya S, Sato Y, Nozoe S, Nomoto K, Takemoto T, Takagi S. 1980. Avenic acid A, a new amino acid possessing an iron–chelating activity. Tetrahedron Letters 21: 30713072.
  • Gries D, Runge M. 1992. The ecological significance of iron mobilization in wild grasses. Journal of Plant Nutrition 15: 17271737.
  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology 119: 471479.
  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S. 2001. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant Journal 25: 159167.
  • Kawai S, Sato Y, Takagi S, Nomoto K. 1987. Separation and determination of mugineic acid and its analogues by high-performance liquid chromatography. Journal of Chromatography 391: 325327.
  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S. 2001. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212: 864871.
  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2005. Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. Journal of Experimental Botany 56: 13051316.
  • Ma JF. 2005. Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Review of Plant Science 24: 267281.
  • Ma JF, Kusano G, Kimura S, Nomoto K. 1993. Specific recognition of mugineic acid-ferric complex. Phytochemistry 34: 599603.
  • Ma JF, Nomoto K. 1992. Biosynthesis of avenic acid A, a ferric chelating substance secreted from Avena sativa L. Chemical and Pharmaceutical Bulletin 40: 28882890.
  • Ma JF, Nomoto K. 1993. Two related biosynthetic pathways for mugineic acids in gramineous plants. Plant Physiology 102: 373378.
  • Ma JF, Nomoto K. 1994a. Biosynthetic pathway of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants. Soil Science and Plant Nutrition 40: 311317.
  • Ma JF, Nomoto K. 1994b. Incorporation of label from 13C, 2H, 15N-labeled methionine molecules during the biosynthesis of 2′-deoxymugineic acid in roots of wheat. Plant Physiology 105: 607610.
  • Ma JF, Nomoto K. 1996. Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiologia Plantarum 97: 609617.
  • Ma JF, Shinada T, Matsuda C, Nomoto K. 1995. Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. Journal of Biological Chemistry 270: 1654916554.
  • Ma JF, Taketa S, Chang YC, Iwashita T, Matsumoto H, Takeda K, Nomoto K. 1999. Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta 207: 590596.
  • Ma JF, Ueno H, Ueno D, Rombola AD, Iwashita T. 2003. Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant and Soil 256: 131137.
  • Mori S, Nishizawa N. 1987. Methionine as a dominant precursor of phytosiderophore in graminaceae plants. Plant and Cell Physiology 28: 10811092.
  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T. 2006. A specific transporter for iron (III)-phytosiderophore in barley roots. Plant Journal 46: 563572.
  • Nakanishi H, Yamaguchi H, Umehara Y, Nishizawa NK, Chino M, Mori S. 2000. Two dioxygenase genes, ids3 and ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Molecular Biology 44: 199207.
  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK. 2002. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant Journal 30: 8394.
  • Nomoto K, Yoshioka H, Arima M, Fushiya S, Takagi S, Takemoto T. 1981. Structure of 2′-deoxymugineic acid, a novel amino acid possessing an iron-chelating activity. Chimia 35: 249250.
  • Römheld V, Marschner H. 1986. Evidence for specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology 80: 175180.
  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S. 1990. Biosynthesis of phytosiderophore. In vitro biosynthesis of 2′-deoxymugineic acid from 1-methionine and nicotianamine. Plant Physiology 93: 14971503.
  • Takagi S. 1976. Naturally occurring iron-chelating compounds in oat- and rice-root washing. Soil Science and Plant Nutrition 22: 423433.
  • Takagi S, Nomoto K, Takemoto K. 1984. Physiological aspects of mugineic acid, a possible phytosiderophore of gramineous plant. Journal of Plant Nutrition 7: 469477.
  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S. 1999. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology 121: 947956.
  • Takemoto T, Nomoto K, Fushiya S, Ouchi R, Kusano G, Hikino H, Takagi S, Matuura Y, Kakudo M. 1978. Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from roots washing of water-cultured Hordeum vulgare L. Proceedings of the Japanese Academy 54: 469473.
  • Von Wiren N, Khodr H, Hider RC. 2000. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiology 124: 11491158.