SEARCH

SEARCH BY CITATION

References

  • Benner R, Fogel ML, Sprague EK, Hodson RE. 1987. Depletion of 13C and its implications for stable carbon isotope studies. Nature 329: 708710.
  • Boström B, Comstedt D, Ekblad A. 2007. Isotope fractionation and 13C enrichment in soil profiles during decomposition of soil organic matter. Oecologia 153: 8998.
  • Brandes E, Kodama N, Whittaker K, Weston C, Rennenberg H, Keitel C, Adams MA, Gessler A. 2006. Short-term variation in the isotopic composition of organic matter allocated from the leaves to the stem of pinus sylvestris: effects of photosynthetic and postphotosynthetic carbon isotope fractionation. Global Change Biology 12: 19221939.
  • Brugnoli E, Farquhar GD. 2000. Photosynthetic fractionation of carbon isotopes. In: LeegoofRC, SharkeyTD, Von CaemmererS, eds. Photosynthesis: physiology and metabolism. Dordrecht, the Netherlands: Kluwer, 399434.
  • Ciais P, Tans PP, Trolier M, White JWC, Francey RJ. 1995. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269: 10981102.
  • Del Galdo I, Six J, Peressotti A, Cotrufo MF. 2003. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology 9: 12041213.
  • Ehleringer JR, Buchmann N, Flanagan LB. 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412422.
  • Ekblad A, Boström B, Holm A, Comstedt D. 2005. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143: 136142.
  • Ekblad A, Högberg P. 2000. Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem. Plant and Soil 219: 197209.
  • Ekblad A, Högberg P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127: 305308.
  • Gleixner G, Danier HJ, Werner RA, Schmidt HL. 1993. Correlations between the 13C content of primary and secondary plant-products in different cell compartments and that in decomposing basidiomycetes. Plant Physiology 102: 12871290.
  • Hallingbäck T, Aronsson G. 1998. Ekologisk katalog över storsvampar och myxomyceter. [Macrofungi and myxomycetes of Sweden and their ecology]. Uppsala, Sweden: ArtDatabanken, SLU.
  • Henn MR, Chapela IH. 2000. Differential C isotope discrimination by fungi during decomposition of C3- and C4-derived sucrose. Applied and Environmental Microbiology 66: 41804186.
  • Henn MR, Chapela IH. 2001. Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128: 480487.
  • Henn MR, Gleixner G, Chapela IH. 2002. Growth-dependent stable carbon isotope fractionation by basidiomycete fungi: δ13C pattern and physiological process. Applied and Environmental Microbiology 68: 49564964.
  • Hobbie EA. 2005. Using isotopic tracers to follow carbon and nitrogen cycling in fungi. In: DightonJ, WhiteJF, OudemansP, eds. The fungal community: its organization and role in the ecosystem, 3rd edn . Boca Raton, FL, USA: Taylor & Francis, 361381.
  • Hobbie EA, Colpaert JV. 2004. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157: 115126.
  • Hobbie EA, Macko SA, Shugart HH. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118: 353360.
  • Hobbie EA, Weber NS, Trappe JM. 2001. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytologist 150: 601610.
  • Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA. 1999. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences, USA 96: 85348539.
  • Jacobson BS, Smith BN, Epstein S, Laties GG. 1970. The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the type of endogenous substrate: the change from lipid to carbohydrate during the respiratory rise in potato slices. Journal of General Physiology 55: 117.
  • Kohzu A, Miyajima T, Tateishi T, Watanabe T, Takahashi M, Wada E. 2005. Dynamics of 13C natural abundance in wood decomposing fungi and their ecophysiological implications. Soil Biology & Biochemistry 37: 15981607.
  • Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E. 1999. Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytologist 144: 323330.
  • Schmidt HL, Gleixner G. 1998. Carbon isotope effects on key reactions in plant metabolism and 13C-patterns in natural compounds. In: GriffithsH, ed. Stable isotopes: integration of biological, ecological and geochemical processes. Oxford, UK: BIOS Scientific, 1326.
  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH. 2003. Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytologist 159: 757774.
  • Trudell SA, Rygiewicz PT, Edmonds RL. 2004. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytologist 164: 317335.
  • Wallander H, Nilsson LO, Hagerberg D, Bååth E. 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151: 753760.
  • Zyakun AM. 1996. Stable carbon isotope discrimination by heterotrophic microorganisms (review). Applied Biochemistry and Microbiology 32: 153159.