SEARCH

SEARCH BY CITATION

References

  • Alexander NJ, McCormick SP, Larson TM, Jurgenson JE. 2004. Expression of Tri15 in Fusarium sporotrichioides. Current Genetics 45: 157162.
  • Bai G, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology 42: 135161.
  • Catlett NL, Lee BN, Yoder OC, Turgeon BG. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter 50: 911.
  • Chappell J, Hahlbrock K. 1984. Transcription of plant defense genes in response to UV-light or fungal elicitor. Nature 311: 7678.
  • Chen X, Steed A, Harden C, Nicholson P. 2006. Characterization of Arabidopsis thalianaFusarium graminerum interactions and identification of variation in resistance among ecotypes. Molecular Plant Pathology 7: 112.
  • Cundliffe E, Cannon M, Davies J. 1974. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proceedings of the National Academy of Sciences, USA 71: 3034.
  • Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, et al . 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 14001402.
  • Desjardins AE. 2006. Fusarium mycotoxins – chemistry, genetics and biology. St. Paul, MN, USA: The American Phytopathological Society.
  • Desjardins AE, Proctor RH, Bai G, McCormick SP, Shaner G, Buechley G, Hohn TM. 1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant–Microbe Interactions 9: 775781.
  • Di Pietro A, Garcia-Maceira FI, Meglecz E, Roncero MIG. 2001. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology 39: 11401152.
  • Goswami RS, Kistler HC. 2004. Heading for disaster: Fusarium graminearum on cereal crops (pathogen profile). Molecular Plant Pathology 5: 515525.
  • Goswami RS, Kistler HC. 2005. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95: 13971404.
  • Guldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler HC. 2006. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genetics and Biology 43: 316325.
  • Hohn TM, McCormick SP, Alexander NJ, Desjardins AE, Proctor RH. 1998. Function and biosynthesis of trichothecenes produced by Fusarium species. Molecular Genetics of Host-Specific Toxins in Plant Disease 13: 1724.
  • Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant–Microbe Interactions 15: 11191127.
  • Jansen C, Von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ. 2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences, USA 102: 1689216897.
  • Jenczmionka NJ, Maier FJ, Losch AP, Schafer W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics 43: 8795.
  • Jenczmionka NJ, Schafer W. 2005. The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Current Genetics 47: 2936.
  • Jennings P. 2005. Bluffers guide to fusarium head blight. BSPP News 47: 1011.
  • Kimura M, Tokai T, O'Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I. 2003. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non essential genes. FEBS Letters 539: 105110.
  • Koch E, Slusarenko A. 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2: 437445.
  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schafer W. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology 7: 449461.
  • Ngugi HK, Scherm H. 2006. Biology of flower-infecting fungi. Annual Review of Phytopathology 44: 261282.
  • Nicholson P, Turner JA, Jenkinson P, Jennings P, Stonehouse J, Nuttall M, Dring D, Weston G, Thomsett M. 2003. Maximising control with fungicides of Fusarium ear blight (FEB) in order to reduce toxin contamination of wheat. HGCA Project Report 297, London, UK.
  • Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M, Yamaguchi I, Yamaguchi K. 2006. Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Molecular Plant–Microbe Interactions 19: 512520.
  • Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. 2007a. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochemical and Biophysical Research Communications 363: 639644.
  • Ochiai N, Tokai T, Takahashi-Ando N, Fujimura M, Kimura M. 2007b. Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiology Letters 275: 5361.
  • Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MIG, Mayayo E, Di Pietro A. 2004. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infection and Immunity 72: 17601766.
  • Parry DW, Jenkinson P, McLeod L. 1995. Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathology 44: 207238.
  • Paulitz TC, Dutilleul P, Yamasaki SH, Fernando WGD, Seaman WL. 1999. A generalized two-dimensional Gaussian model of disease foci of head blight of wheat caused by Gibberella zeae. Phytopathology 89: 7483.
  • Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Welham SJ, Kane AF, Gilmour AR, Thompson R, Webster R, et al . 2005. The guide to GenStat release 8, Part 2: statistics. Oxford, UK: VSN International.
  • Proctor RH, Hohn TM, McCormick SP. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant–Microbe Interactions 8: 593601.
  • Proctor RH, Hohn TM, McCormick SP. 1997. Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143: 25832591.
  • Pugh WG, Johann H. 1933. Factors affecting infection of wheat heads by Gibberella saubinetti. Journal of Agricultural Research 46: 771797.
  • Ramamoorthy V, Zhao X, Snyder AK, Xu JR, Shah DM. 2007. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cellular Microbiology 9: 14911506.
  • Savard ME, Sinha RC, Seaman WL, Fedak G. 2000. Sequential distribution of the mycotoxin deoxynivalenol in wheat spikes after inoculation with Fusarium graminearum. Canadian Journal of Plant Pathology–Revue Canadienne de Phytopathologie 22: 280285.
  • Seong K, Hou ZM, Tracy M, Kistler HC, Xu JR. 2005. Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95: 744750.
  • Sesma A, Osbourn AE. 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431: 582586.
  • Somers DJ, Thomas J, DePauw R, Fox S, Humphreys G, Fedak G. 2005. Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 111: 16231631.
  • Strange RN, Smith H. 1971. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum. Physiological Plant Pathology 1: 141150.
  • Tag A, Hicks J, Garifullina G, Ake C Jr, Phillips TD, Beremand M, Keller N. 2000. G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology 38: 658665.
  • Urban M, Daniels S, Mott E, Hammond-Kosack K. 2002. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant Journal 32: 961973.
  • Urban M, Mott E, Farley T, Hammond-Kosack K. 2003. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology 4: 347359.
  • Van Hemelrijck W, Wouters PFW, Brouwer M, Windelinckx A, Goderis IJWM, De Bolle MFC, Thomma BPHJ, Cammue BPA, Delaure SL. 2006. The Arabidopsis defense response mutant esa1 as a model to discover novel resistance traits against Fusarium diseases. Plant Science (Oxford) 171: 585595.
  • Voigt CA, Schafer W, Salomon S. 2005. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant Journal 42: 364375.
  • Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J. 2007. PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Research. doi:10.1093/nar/gkm1858
  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136: 26212632.