SEARCH

SEARCH BY CITATION

References

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S. 1999. Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Molecular Plant–Microbe Interactions 12: 10311043.
  • Adam L, Somerville, SC. 1996. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant Journal 9: 341356.
  • Agrios GN (ed). 1988. Plant pathology, 3rd edn. New York, NY, USA: Academic Press Inc.
  • Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373399.
  • Bai YL, Van Der Hulst R, Bonnema G, Marcel BC, Meijer-Dekens F, Niks RE, Lindhout P. 2005. Tomato defense to Oidium neolycopersici: Dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Molecular Plant–Microbe Interactions 18: 354362.
  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MB, Dry I. 2005. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical & Applied Genetics 111: 370377.
  • Van Der Biezen EA, Jones JDG. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Science 23: 454456.
  • Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735743.
  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P et al . 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics 38: 716720.
  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E et al . 1994. A central role of salicylic acid in plant disease resistance. Science 266: 12471250.
  • Donald TM, Pellerone F, Adam-Blondon, AF, Bouquet A, Thomas MR, Dry IB. 2002. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical & Applied Genetics 104: 610618.
  • Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19: 1349.
  • Ellis C, Turner JG. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 10251033.
  • Frye CA, Innes RW. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10: 947956.
  • Halterman D, Zhou FS, Wei FS, Wise RP, Schulze-Lefert P. 2001. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant Journal 25: 335348.
  • Huang CC, Hoefs-van de Putte PM, Haanstra-van der Meer JG, Meijer-Dekens F, Lindhout P. 2000. Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. Heredity 85: 511520.
  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15: 25032513.
  • Jones H, Whipps JM, Gurr SJ. 2001. The tomato powdery mildew fungus Oidium neolycopersici. Molecular Plant Pathology 2: 303309.
  • Jørgensen JH. 1994. Genetics of powdery mildew resistance in barley. Critical Reviews in Plant Science 13: 97119.
  • Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman Y. 2001. Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O-lycopersici, infecting tomato in different parts of the world. Mycological Research 105: 684697.
  • Koch E, Slusarenko AJ. 1990. Fungal pathogens of Arabidopsis thaliana (L.) Heynh. Botanica Helvetica 100: 257268.
  • Koornneef M, Alonso-Blanco C, Vreugdenhil D. 2004. Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55: 141172.
  • Lebeda A, Mieslerová B. 2000. Case study of host–pathogen interaction: tomato (Lycopersicon spp.)-tomato powdery mildew (Oidium lycopersici). Plant Protection Science 36: 156162.
  • Linde M, Debener T. 2003. Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.:Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theoretical & Applied Genetics 107: 256262.
  • Linde M, Mattiesch M, Debener T. 2004. Rpp1, a dominant gene providing race-specific resistance to rose powdery mildew (Podosphaera pannosa): molecular mapping, SCAR development and confirmation of disease resistance data. Theoretical & Applied Genetics 109: 12611266.
  • Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F. 2002. Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical & Applied Genetics 104: 11731184.
  • Lukowitz W, Gillmor CS, Scheible WR. 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiology 123: 795805.
  • Maor R, Shirasu K. 2005. The arms race continues: battle strategies between plants and fungal pathogens. Current Opinion in Microbiology 8: 399404.
  • Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J. 2003. Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163: 735746.
  • Mitchell-Olds T, Schmitt J. 2006. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441: 947952.
  • Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP. 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18: 27922806.
  • Nawrath C, Metraux JP. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393404.
  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301: 969972.
  • Peterhänsel C, Freialdenhoven A, Kurth J, Kolsch R, Schulze-Lefert P. 1997. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9: 13971409.
  • Pfaffl, M W 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.
  • Plotnikova JM, Reuber TL, Ausubel FM. 1998. Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90: 10091016.
  • Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL. 2004. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166: 15171527.
  • Schiff CL, Wilson IW, Somerville SC. 2001. Polygenic powdery mildew disease resistance in Arabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathology 50: 690701.
  • Schmid K, Torjek O, Meyer R, Schmuths H, Hoffmann MH, Altmann T. 2006. Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theoretical and Applied Genetics 112: 11041114.
  • Schulze-Lefert P, Vogel J. 2000. Closing the ranks to attack by powdery mildew. Trends in Plant Science 5: 343348.
  • Seiffert U, Schweizer P. 2005. A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Molecular Plant–Microbe Interactions 18: 906912.
  • Sharbel TF, Haubold B, Mitchell-Olds T. 2000. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Molecular Ecology 9: 21092118.
  • Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400: 667671.
  • Stone BA, Clarke AE. 1992. Chemistry and physiology of higher plant 1,3-ß-glucans (callose). In: StoneBA, ClarkeAE, eds. Chemistry and biology of (1,3)-ß-glucans. Bundoora, Australia: La Trobe University Press, 365429.
  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal 11: 11871194.
  • Vogel J, Somerville S. 2000. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proceedings of the National Academy of Sciences, USA 97: 18971902.
  • Vogel JP, Raab TK, Schiff C, Somerville SC. 2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14: 20952106.
  • Vogel JP, Raab TK, Somerville CR, Somerville SC. 2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant Journal 40: 968978.
  • Wang S, Basten CJ, Zeng ZB. 2006. Windows QTL cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562565.
  • Wilson IW, Schiff CL, Hughes DE, Somerville SC. 2001. Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158: 13011309.
  • Xiao, SY, Brown, S, Patrick, E, Brearley, C, Turner, JG. 2003a. Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15: 3345.
  • Xiao SY, Calis O, Patrick E, Zhang GG, Charoenwattana P, Muskett P, Parker JE, Turner JG. 2005. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant Journal 42: 95110.
  • Xiao SY, Charoenwattana P, Holcombe L, Turner JG. 2003b. The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. Molecular Plant–Microbe Interactions 16: 289294.
  • Xiao SY, Ellwood S, Calis O, Patrick E, Li TX, Coleman M, Turner JG. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118120.
  • Xiao SY, Ellwood S, Findlay K, Oliver RP, Turner JG. 1997. Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-O to two powdery mildew diseases. Plant Journal 12: 757768.
  • Xiao SY, Emerson B, Ratanasut K, Patrick E, O’Neill C, Bancroft I, Turner JG. 2004. Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Molecular Biology and Evolution 21: 16611672.
  • Xin Z, Velten JP, Oliver MJ, Burke JJ. 2003. High-throughput DNA extraction method suitable for PCR. Biotechniques 34: 820826.
  • Zhou FS, Kurth JC, Wei FS, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P. 2001. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13: 337350.