SEARCH

SEARCH BY CITATION

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, De Pouplana LR, Martinez-Castilla L, YanofSky MF. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences, USA 97: 53285333.
  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5: 569579.
  • Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M. 2004. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. Journal of Plant Research 117: 229244.
  • Barraclough TG, Vogler AP, Harvey PH. 1998. Revealing the factors that promote speciation. Philosophical Transactions of the Royal Society B 353: 241249.
  • Becker A, Theissen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29: 464489.
  • Benfey PN, Chua NH. 1990. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959966.
  • Berbel A, Navarro C, Ferrandiz C, Canas LA, Beltran J-P, Madueno F. 2001. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant Journal 25: 441451.
  • Berbel A, Navarro C, Ferrandiz C, Canas LA, Beltran JP, Madueno F. 2005. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiology 139: 174185.
  • Bierhorst DW. 1971. Morphology of vascular plants. New York, NY, USA: Macmillan.
  • Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 3751.
  • Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 3137.
  • Davies B, EgeaCortines M, Silva ED, Saedler H, Sommer H. 1996. Multiple interactions amongst floral homeotic MADS box proteins. The EMBO Journal 15: 43304343.
  • De Craene LPR. 2007. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Annals of Botany (London) 100: 621630.
  • De Craene LPR, Soltis PS, Soltis DE. 2003. Evolution of floral structures in basal angiosperms. International Journal of Plant Sciences 164, S329S363.
  • Doyle JA, Eklund H, Herendeen PS. 2003. Floral evolution in Chloranthaceae: implications of a morphological phylogenetic analysis. International Journal of Plant Sciences 164, S365S382.
  • Drea S, Hileman LC, De Martino G, Irish VF. 2007. Functional analyses of genetic pathways controlling petal specification in poppy. Development 134: 41574166.
  • Eames AJ. 1961. Morphology of the angiosperms. New York, NY, USA: McGraw-Hill.
  • Egea-Cortines M, Saedler H, Sommer H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. The EMBO Journal 18: 53705379.
  • Endress PK. 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Botanische Jahrbücher Systematik 109: 153226.
  • Endress PK. 1994. Floral structure and evolution of primitive angiosperms – recent advances. Plant Systematics and Evolution 192: 7997.
  • Goto K, Meyerowitz EM. 1994. Function and regulation of the Arabidopsis floral homeotic gene pistillata. Genes and Development 8: 15481560.
  • Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF. 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 17111721.
  • Hsu HF, Yang CH. 2002. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant and Cell Physiology 43: 11981209.
  • Jack T, Brockman LL, Meyerowitz EM. 1992. The homeotic gene apetala3 of Arabidopsis-thaliana encodes a mads box and is expressed in petals and stamens. Cell 68: 683697.
  • Johansen B, Pedersen LB, Skipper M, Frederiksen S. 2002. MADS-box gene evolution – structure and transcription patterns. Molecular Phylogenetics and Evolution 23: 458480.
  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology 52: 831841.
  • Kaufmann K, Melzer R, Theissen G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183198.
  • Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, Ma H, Soltis PS, Soltis DE. 2005. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant Journal 43: 724744.
  • Kim ST, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany 91: 21022118.
  • Kramer EM, Di Stilio VS, Schluter PM. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 111.
  • Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765783.
  • Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM. 2007. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell 19: 750766.
  • Kramer EM, Irish VF. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144148.
  • Kramer EM, Irish VF. 2000. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. International Journal of Plant Sciences 161, S29S40.
  • Kramer EM, Su HJ, Wu CC, Hu JM. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6: 3047.
  • Kramer EM, Zimmer EA. 2006. Gene duplication and floral developmental genetics of basal eudicots. Advances in Botanical Research 44: 353384.
  • Krizek BA. 1999. Ectopic expression AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Developmental Genetics 25: 224236.
  • Krizek BA, Meyerowitz EM. 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 1122.
  • Lamb RS, Irish VF. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences, USA 100: 65586563.
  • Li GS, Meng Z, Kong HZ, Chen ZD, Theissen G, Lu AM. 2005. Characterization of candidate class A, B and E floral homeotic genes from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae). Development Genes and Evolution 215: 437449.
  • Litt A, Irish VF. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821833.
  • Lü SH, Du XQ, Lu WL, Chong K, Meng Z. 2007. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evolution and Development 9: 92104.
  • De Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18, 18331845.
  • McGonigle B, Bouhidel K, Irish VF. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes and Development 10, 18121821.
  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A. 2005. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Molecular Biology 58: 435445.
  • Neff MM, Chory J. 1998. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome during Arabidopsis development. Plant Physiology 118: 2735.
  • Ng M, Yanofsky MF. 2001. Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics 2: 186195.
  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T. 2004. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant and Cell Physiology 45: 325332.
  • Piwarzyk E, Yang Y, Jack T. 2007. Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiology 145: 14951505.
  • Purugganan MD. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. Journal of Molecular Evolution 45: 392396.
  • Qiu YL, Lee JH, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen ZD, Savolainen V, Chase, MW. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404407.
  • Riechmann JL, Krizek BA, Meyerowitz EM. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, USA 93: 47934798.
  • Riechmann JL, Meyerowitz EM. 1997. MADS domain proteins in plant development. Biological Chemistry 378: 10791101.
  • Rijpkema AS, Royaert S, Zethof J, Van Der Weerden G, Gerats T, Vandenbussche M. 2006. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 18191832.
  • Shan HY, Su KM, Lu WL, Kong HZ, Chen ZD, Meng Z. 2006. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Development Genes and Evolution 216: 785795.
  • Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. 2007. The ABC model and its applicability to basal angiosperms. Annals of Botany (London) 100: 155163.
  • Sommer H, Beltran J-P, Huijser P, Pape H, Lonnig W-E, Saedler H, Schwarz-Sommer Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal 3: 605613.
  • Stellari GM, Jaramillo MA, Kramer EM. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21: 506519.
  • Takhtajan A. 1991. Evolutionary trends in flowering plants. New York, NY, USA: Columbia University History Press.
  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115149.
  • Theissen G, Kim JT, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution 43: 484516.
  • Theissen G, Melzer R. 2007. Molecular mechanisms underlying the origin and diversification of the angiosperm flower. Annals of Botany 100: 603619.
  • Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig WE, Saedler H, Sommer H, Schwarz-Sommer Z. 1992. Globosa – a homeotic gene which interacts with deficiens in the control of Antirrhinum floral organogenesis. The EMBO Journal 11: 46934704.
  • Tzeng TY, Liu HC, Yang CH. 2004. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. The Journal of Biological Chemistry 279: 1074710755.
  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T. 2003. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research 31: 44014409.
  • Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16: 741754.
  • Vanderkrol AR, Brunelle A, Tsuchimoto S, Chua NH. 1993. Functional-analysis of petunia floral homeotic mads box gene pmads1. Genes and Development 7: 12141228.
  • Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ. 2004. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131: 60836091.
  • Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ. 2007. Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proceedings of the National Academy of Sciences, USA 104, 10811086.
  • Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences, USA 96: 73427347.
  • Winter KU, Saedler H, Theissen G. 2002a. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant Journal 31: 457475.
  • Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G. 2002b. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Molecular Biology and Evolution 19: 587596.
  • Xu YY, Wang XM, Li J, Li JH, Wu JS, Walker JC, Xu ZH, Chong K. 2005. Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana. Plant Molecular Biology 57: 773784.
  • Yang YZ, Xiang HJ, Jack T. 2003. Pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant Journal 33: 177188.
  • Zachgo S, Silva ED, Motte P, Trobner W, Saedler H, Schwarzsommer Z. 1995. Functional-analysis of the antirrhinum floral homeotic deficiens gene in-vivo and in-vitro by using a temperature-sensitive mutant. Development 121: 28612875.
  • Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ. 2002. The root of the angiosperms revisited. Proceedings of the National Academy of Sciences, USA 99: 68486853.