SEARCH

SEARCH BY CITATION

References

  • Abrahamson WG, McCrea KD. 1986. The impacts of galls and gallmakers on plants. Proceedings of the Entomological Society of Washington 88: 364367.
  • Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA. 1991. The role of phenolics in goldenrod ball gall resistance and formation. Biochemical Systematics and Ecology 19: 615622.
  • Abrahamson WG, Weis AE. 1987. Nutritional ecology of arthropod gall makers. In: SlanskyFJr, RodriguezJG, eds. Nutritional ecology of insects, mites, spiders, and related invertebrates. New York, NY, USA: Wiley & Sons, 238258.
  • Abrahamson WG, Weis AE. 1997. Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton, NJ, USA: Princeton University Press.
  • Allison SD, Schultz JC. 2005. Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology 31: 151166.
  • Anderson MJ. 2004. distlm v.5: a FORTRAN computer program to calculate a distance-based multivariate analysis from a linear model. Auckland, NZ: University of Auckland, Department of Statistics.
  • Anderson MJ. 2005. permanova: a FORTRAN computer program to calculate a distance-based multivariate analysis from a linear model. Auckland, NZ: University of Auckland, Department of Statistics.
  • Beck EG. 1947. Some studies on the Solidago gall caused by Eurosta solidaginis Fitch. Ph.D. thesis. Ann Arbor, MI, USA: University of Michigan.
  • Beck EG. 1953. The nature of the stimulus in the Solidago gall induced by the larva of Gnorimoschema gallaesolidaginis. Brookhaven Symposia in Biology 6: 235251.
  • Ter Braak CJF. 1994. Canonical community ordination: Part 1 Basic theory and linear methods. Ecoscience 1: 127140.
  • Ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination, 4.5 edn. Ithaca, NY, USA: Microcomputer Power.
  • Bronner R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: ShorthouseJD, RohfritschO, eds. Biology of insect-induced galls. New York, NY, USA: Oxford University Press, 118140.
  • Craig TP, Itami JK, Abrahamson WG, Horner JD. 1993. Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47: 16961710.
  • Crews LJ, McCully ME, Canny MJ, Huang CX, Ling LEC. 1998. Xylem feeding by spittlebug nymphs: some observations by optical and cryo-scanning electron microscopy. American Journal of Botany 85: 449460.
  • Dawkins R. 1982. The extended phenotype. Oxford, UK: WH Freeman & Co.
  • De Moraes CM, Mescher MC. 2004. Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proceedings of the National Academy of Sciences, USA 101: 89938997.
  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393: 570573.
  • Delphia CM, Mescher MC, De Moraes CM. 2007. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. Journal of Chemical Ecology 33: 9971012.
  • Dicke M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomologia Experimentalis et Applicata 91: 131142.
  • Du YJ, Poppy GM, Powell W. 1996. Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. Journal of Chemical Ecology 22: 15911605.
  • Eigenbrode SD, Ding H, Shiel P, Berger PH. 2002. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceeding of the Royal Society of London, Series B 269: 455460.
  • Fay PA, Hartnett DC, Knapp AK. 1996. Plant tolerance of gall-insect attack and gall-insect performance. Ecology 77: 521534.
  • Felt EP. 1940. Plant galls and gall makers. Ithaca, NY, USA: Comstock Publishing.
  • Fraenkel GS. 1959. Raison d’être of secondary plant substances. Science 129: 14661470.
  • Fritzsch-Hoballah ME, Turlings TCJ. 2001. Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evolutionary Ecology Research 3: 553565.
  • Gagné RJ. 1989. The plant-feeding gall midges of North America. Ithaca, NY, USA: Comstock Publishing.
  • Gonzalez L, Manly BFJ. 1998. Analysis of variance by randomization with small data sets. Environmetrics 9: 5365.
  • Hartley SE. 1998. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall former? Oecologia 113: 492501.
  • Hartnett DC, Abrahamson WG. 1979. The effect of stem gall insects on life history patterns in Solidago canadensis. Ecology 60: 910916.
  • Izzo TJ, Julião GR, Almada ED, Fernandes GW. 2006. Hiding from defenders: localized chemical modification on the leaves of an Amazonian ant-plant induced by a gall-making insect (Diptera: Cecidomyiidae). Sociobiology 48: 417426.
  • Karban R, Baldwin IT. 1997. Induced responses to herbivory. Chicago, IL, USA: University of Chicago Press.
  • Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 21412144.
  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J. 2004. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 65: 18951902.
  • Lacroix R, Mukabana WR, Gouagna LC, Koella JC. 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biology 3: e298 doi:10.1371/ journal.pbio.0030298.
  • Larson KC. 1998. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115: 161166.
  • Legendre P, Anderson MJ. 1998. Program distpcoa. Montreal, Canada: Département de Sciences Biologiques, Université de Montréal.
  • Legendre P, Anderson MJ. 1999. Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecological Monographs 69: 124.
  • Leiby RW. 1922. Biology of the goldenrod gall-maker Gnorimoschema gallaesolidaginis Riley. Journal of the New York Entomological Society 30: 8194.
  • Van Loon JJA, De Boer G, Dicke M. 2000. Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomologia Experimentalis et Applicata 97: 219227.
  • Maddox GD, Root RB. 1990. Structure of the encounter between goldenrod (Solidago altissima) and its diverse insect fauna. Ecology 71: 21152124.
  • Mani MS. 1992. Introduction to Cecidology. In: ShorthouseJD, RohfritschO, eds. Biology of insect-induced galls. New York, NY, USA: Oxford University Press, 37.
  • McCrea KD, Abrahamson WG. 1986. Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68: 174180.
  • McCrea KD, Abrahamson WG, Weis AE. 1985. Goldenrod ball gall effects on Solidago altissima: 14C translocation and growth. Ecology 66: 19021907.
  • Meyer GA. 1993. A comparison of the impacts of leaf- and sap-feeding insects on growth and allocation of goldenrod. Ecology 74: 11011116.
  • Meyer GA, Whitlow TH. 1992. Effects of leaf and sap feeding insects on photosynthetic rates of goldenrod. Oecologia 92: 480489.
  • Miller ME. 2000. A comparative taxonomic-natural history study of eight Neartic species of Gnorimoschema that induce stem galls on Asteraceae, including descriptions of three new species (Lepidoptera: Gelechiidae). In: Thomas Say Publication in Entomology: Monographs. Lanham, USA: Entomological Society of America.
  • Ngumbi EN, Ngi-Song AJ, Njagi ENM, Torto R, Wadhams LJ, Birkett MA, Pickett JA, Overholt WA, Torto B. 2005. Responses of the stem borer larval endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) to plant derived synomones: laboratory and field cage experiments. Biocontrol Science and Technology 15: 271279.
  • Nyman T, Julkunen-Tiitto R. 2000. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences, USA 97: 1318413187.
  • Ollerstam O, Larsson S. 2003. Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Journal of Chemical Ecology 29: 163174.
  • Raman A, Schaefer CW, Withers TM. 2005. Galls and gall-inducing arthropods: an overview of their biology, ecology and evolution. In: RamanA, SchaeferCW, WithersTM, eds. Biology, ecology, and evolution of gall-inducing arthropods. Enfield, CT, USA: Science Publishers, 133.
  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ. 2005. Recruitment of nematodes to insect damaged maize roots. Nature 434: 732737.
  • Rodriguez-Saona C, Crafts-Brandner SJ, Canas LA. 2003. Volatile emissions triggered by multiple herbivore damage: Beet armyworm and whitefly feeding on cotton plants. Journal of Chemical Ecology 29: 25392550.
  • Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Paré PW. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. Journal of Chemical Ecology 28: 17331747.
  • Roy BA. 1993. Floral mimicry by a plant pathogen. Nature 362: 5658.
  • Schmelz EA, Engelberth J, Alborn HT, O'Donnell P, Sammons M, Toshima H, Tumlinson JH. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences, USA 100: 1055210557.
  • Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT. 2004. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. The Plant Journal 39: 790808.
  • Sokal RR, Rohlf FJ. 1995. Biometry, 3rd edn. New York, NY, USA: WH Freeman.
  • Statistica. 2006. User manual, release 8.0. Tulsa, OK, USA: StatSoft.
  • Statistix. 2003. User manual, release 8.0. Tallahassee, FL, USA: Analytical Software.
  • Stewart-Jones A, Poppy GM. 2006. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. Journal of Chemical Ecology 32: 845864.
  • Tooker JF, De Moraes CM. 2007. Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecological Entomology 32: 153161.
  • Tooker JF, Hanks LM. 2004. Stereochemistry of host plant monoterpenes as mate location cues for the gall wasp Antistrophus rufus. Journal of Chemical Ecology 30: 473477.
  • Tooker JF, Hanks LM. 2006. Tritrophic interactions and reproductive fitness of the prairie perennial Silphium laciniatum Gillette (Asteraceae). Environmental Entomology 35: 537545.
  • Tooker JF, Koenig WA, Hanks LM. 2002. Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus. Proceedings of the National Academy of Sciences, USA 99: 1548615491.
  • Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S. 1998. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biocontrol 11: 122129.
  • Turlings TCJ, Tumlinson JH, Lewis WJ. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 12511253.
  • Uhler, LD. 1951. Biology and ecology of the goldenrod gall fly, Eurosta solidaginis (Fitch). Memoir of the Cornell University Agricultural Experiment Station 300: 351.
  • Walling LL. 2000. The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19: 195216.
  • Waring GL, Abrahamson WG, Howard DJ. 1990. Genetic differentiation among host-associated populations of the gallmaker Eurosta solidaginis (Diptera: Tephritidae). Evolution 44: 16481655.
  • Washburn JO. 1984. Mutualism between a cynipid gall wasp and ants. Ecology 65: 654656.
  • Weis AE, Wolfe CL, Gorman WL. 1989. Genotypic variation and integration in histological features of the goldenrod ball gall. American Journal of Botany 76: 15411550.